Sudyka J., Harasim P., Kowalska-Sudyka M., Mechowski T.: Quality control of Traffic Speed Deflectometer measurements on road network. Roads and Bridges – Drogi i Mosty, 20, 4, 2021, 441-450, DOI: 10.7409/rabdim.021.026
DOI: https://doi.org/10.7409/rabdim.021.026
Google Scholar
Deep P., Andersen M.B., Rasmussen S., Marradi A., Thom N.H., Presti D.L.: Simulating deflection of a jointed rigid pavement under Rolling Wheel Deflectometer (RAPTOR) loading. In: Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements-Mairepav9, Lecture Notes in Civil Engineering, 76, Springer, Cham, 2020, 859-870, DOI: 10.1007/978-3-030-48679-2_80
DOI: https://doi.org/10.1007/978-3-030-48679-2_80
Google Scholar
Zarządzenie nr 21 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 17 czerwca 2019 roku w sprawie diagnostyki stanu nawierzchni i wybranych elementów korpusu drogi. GDDKiA, https://www.archiwum.gddkia.gov.pl/pl/2982/Diagnostyka-Stanu-Nawierzchni (10.07.2025)
Google Scholar
Alghoul M., Irshad K.: Asphalt pavement temperature fluctuation: Impacts and solutions. Journal of Architectural Environment & Structural Engineering Research, 6, 3, 2023, 1-3, DOI: 10.30564/jaeser.v6i3.5869
DOI: https://doi.org/10.30564/jaeser.v6i3.5869
Google Scholar
Adwan I., Milad A., Memon Z.A., Widyatmoko I., Ahmat Zanuri N., Memon N.A., Yusoff N.I.M.: Asphalt pavement temperature prediction models: A review. Applied Sciences, 11, 9, 2021, Article ID: 3794, DOI: 10.3390/app11093794
DOI: https://doi.org/10.3390/app11093794
Google Scholar
Assogba O.C., Tan Y., Zhou X., Zhang C., Anato J.N.: Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect. Construction and Building Materials, 235, 2020, Article ID: 117406, DOI: 10.1016/j.conbuildmat.2019.117406
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117406
Google Scholar
Zhang N., Wu G., Chen B., Cao C.: Numerical model for calculating the unstable state temperature in asphalt pavement structure. Coatings, 9, 4, 2019, Article ID: 271, DOI: 10.3390/coatings9040271
DOI: https://doi.org/10.3390/coatings9040271
Google Scholar
Chollet F., Allaire J.J., Matuk K.: Deep learning: praca z językiem R i biblioteką Keras. Helion, Gliwice, 2019
Google Scholar
Clemmensen L., Kjærsgaard R.: Data representativity for machine learning and AI systems. arXiv, 2203, 2023, Article ID: 04706, DOI: 10.48550/arXiv.2203.04706
Google Scholar
Ahmed N.S., Huynh N., Gassman S., Mullen R., Pierce C., Chen Y.: Predicting pavement structural condition using machine learning methods. Sustainability, 14, 14, 2022, Article ID: 8627, DOI: 10.3390/su14148627
DOI: https://doi.org/10.3390/su14148627
Google Scholar
Guo X.; Hao P.: Using a random forest model to predict the location of potential damage on asphalt pavement. Applied Sciences, 11, 21, 2021, Article ID: 10396, DOI: 10.3390/app112110396
DOI: https://doi.org/10.3390/app112110396
Google Scholar
Veeraragavan R.K., Nivedya M.K., Mallick R.B.: Accurate identification of pavement materials that are susceptible to moisture damage with the use of advanced conditioning and test methods and the use of machine learning techniques. SN Applied Sciences, 1, 79, 2019, DOI: 10.1007/s42452-018-0086-8
DOI: https://doi.org/10.1007/s42452-018-0086-8
Google Scholar
Younos M.A., Abd El-Hakim R.T., El-Badawy S.M., Afify H.A.: Multi-input performance prediction models for flexible pavements using LTPP database. Innovative Infrastructure Solutions, 5, 27, 2020, DOI 10.1007/s41062-020-0275-3
DOI: https://doi.org/10.1007/s41062-020-0275-3
Google Scholar
Milad A.A., Adwan I., Majeed S.A., Memon Z.A., Bilema M., Omar H.A.: Development of a hybrid machine learning model for asphalt pavement temperature prediction. In: IEEE Access, 9, 2021, 158041-158056, DOI: 10.1109/ACCESS.2021.3129979
DOI: https://doi.org/10.1109/ACCESS.2021.3129979
Google Scholar
Piryonesi S.M., El-Diraby T.E.: Using machine learning to examine impact of type of performance indicator on flexible pavement deterioration modeling. Journal of Infrastructure Systems, 27, 2, 2021, DOI: 10.1061/(ASCE)IS.1943-555X.0000602
DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000602
Google Scholar
Gopalakrishnan K., Agrawal A., Ceylan H., Kim, S., Choudhary A.: Knowledge discovery and data mining in pavement inverse analysis. Transport, 28, 1, 2013, 1-10, DOI: 10.3846/16484142.2013.777941
Google Scholar
Nafaa S., Essam H., Ashqar H., Ashour K., Emad D., Hassan A., Mohamed R., Elhenawy M., Alhadidi T.: Automated pavement cracks detection and classification using deep learning. Proceeding of the 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), Mt Pleasant, MI, USA, 2024, 1-5, DOI: 10.1109/ICMI60790.2024.10586098
DOI: https://doi.org/10.1109/ICMI60790.2024.10586098
Google Scholar
Koné A., Es-Sabar A., Do M.-T.: Application of machine learning models to the analysis of skid resistance data. Lubricants, 11, 8, Article ID: 328, DOI: 10.3390/lubricants11080328
DOI: https://doi.org/10.3390/lubricants11080328
Google Scholar
Mazurek G., Bąk-Patyna P.: Application of data mining techniques to predict luminance of pavement aggregate. Applied Sciences, 13, 7, 2023, Article ID: 4116, DOI: 10.3390/app13074116
DOI: https://doi.org/10.3390/app13074116
Google Scholar
Gopalakrishnan K., Agrawal A., Ceylan H., Kim S., Choudhary A.: Knowledge discovery and data mining in pavement inverse analysis. Transport, 28, 1, 2013, 1-10, DOI: 10.3846/16484142.2013.777941
DOI: https://doi.org/10.3846/16484142.2013.777941
Google Scholar
Mansour F., Reza Shahni D.: Pavement structural evaluation based on roughness and surface distress survey using neural network model. Construction and Building Materials, 204, 2019, 768-780, DOI: 10.1016/j.conbuildmat.2019.01.142
DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.142
Google Scholar
Sudyka J., Mechowski T., Harasim P., Graczyk M., Matysek A.: Optimisation of BELLS3 model coefficients to increase the precision of asphalt layer temperature calculations in FWD and TSD measurements. Roads and Bridges – Drogi i Mosty, 23, 4, 2024, 437-456, DOI: 10.7409/rabdim.024.021
DOI: https://doi.org/10.7409/rabdim.024.021
Google Scholar
Hastie T., Tibshirani R., Friedman J.: Unsupervised learning. In: The elements of statistical learning. Springer Series in Statistics. Springer, New York, NY, 2009, 485-585, DOI: 10.1007/978-0-387-84858-7_14
DOI: https://doi.org/10.1007/978-0-387-84858-7_14
Google Scholar
Mahmud K., Azam S., Karim A., Zobaed S., Shanmugam B., Mathur D.: Machine learning based PV power generation forecasting in Alice Springs. IEEE Access, 9, 2021, 46117-46128, DOI: 10.1109/ACCESS.2021.3066494
DOI: https://doi.org/10.1109/ACCESS.2021.3066494
Google Scholar
Biecek P.: Przewodnik po pakiecie R. Oficyna Wydawnicza GIS, wydanie 4 rozszerzone, Wrocław, 2017
Google Scholar
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2011, 2825-2830
Google Scholar
Breiman L.: Random forests. Machine Learning, 45, 2001, 5-32, DOI: 10.1023/A:1010933404324
DOI: https://doi.org/10.1023/A:1010933404324
Google Scholar
Freund Y., Schapire R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 1, 1997, 119-139, DOI: 10.1006/jcss.1997.1504
DOI: https://doi.org/10.1006/jcss.1997.1504
Google Scholar
Zhang H., Yang Q., Shao J., Wang G.: Dynamic streamflow simulation via online gradient-boosted regression tree. Journal of Hydrologic Engineering, 24, 10, 2019, Article ID: 04019041, DOI: 10.1061/(ASCE)HE.1943-5584.0001822
DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001822
Google Scholar
Wytyczne diagnostyki stanu nawierzchni dla dróg wojewódzkich. Zarząd Dróg Wojewódzkich w Olsztynie, https://www.zdw.olsztyn.pl/strona-glowna/dokumenty-techniczne.html (10.10. 2018)
Google Scholar