Nicholls J.C., Carswell I., Widyatmoko I., Elliott R.C., Harris J., Taylor R.: Recycling surfacing materials back into thin surfacing systems. Proceedings of the Institution of Civil Engineers – Construction Materials, 161, 3, 2008, 105-112, DOI: 10.1680/coma.2008.161.3.105
Google Scholar
Kokken I., Roberto A., Hernando D., Zaumanis M., Hugener M., Van den bergh W.: Evaluating binder ageing and polymer degradation levels in different reclaimed asphalt pavement (RAP) fractions. Construction and Building Materials, 492, 2025, Article ID: 142909, DOI: 10.1016/j.conbuildmat.2025.142909
Google Scholar
Farid M., Król J.: Investigating the ageing process of polymer modified bitumen using a modified Thin-Film Oven Test in the aspect of recycling purpose. Roads and Bridges – Drogi i Mosty, 22, 4, 2023, 379-386, DOI: 10.7409/rabdim.023.020
Google Scholar
Szołtysik J., Sorociak W., Kwiecień S.: Examination of the properties of asphalt mixtures consisting of reclaimed asphalt pavement with polymer modified binder and highly modified asphalt binder. Roads and Bridges – Drogi i Mosty, 23, 1, 2024, 29-44, DOI: 10.7409/rabdim.024.002
Google Scholar
Kandhal P.S., Foo K.Y.: Designing recycled hot mixture asphalt mixtures using superpave technology. National Center For Asphalt Paving Technology, NCAT Report No. 96-5, Auburn University, 1997, 7-22
Google Scholar
Liphardt A., Król J., Radziszewski P.: Influence of polymer modified binder content from RAP on stone mastic asphalt rutting resistance. Procedia Engineering, 153, 2016, 407-413, DOI: 10.1016/j.proeng.2016.08.142
Google Scholar
Blasl A., Kraft J., Lo Presti D., Di Mino G., Wellner F.: Performance of asphalt mixes with high recycling rates for wearing layers. Proceedings of the 6th Eurasphalt Eurobitume Congress, Prague, Czech Republic, 2016, https://www.h-a-d.hr/pubfile.php?id=1137 (available: 03.09.2025)
Google Scholar
Behnia B., Dave E.V., Ahmed S., Buttlar W.G., Reis H.: Effects of recycled asphalt pavement amounts on low-temperature cracking performance of asphalt mixtures using acoustic emissions. Transportation Research Record, 2208, 1, 2011, 64-71, DOI: 10.3141/2208-09
Google Scholar
Eskandarsefat S., Hofko B., Sangiorgi C.: A comparison study on low-temperature properties of Stone Mastic Asphalts modified with PmBs or modified fibres. International Journal of Pavement Engineering, 21, 12, 2018, 1541-1549, DOI: 10.1080/10298436.2018.1554219
Google Scholar
Yao Y., Yang J., Gao J., Xu J., Zhang Y., Yu S.: Effect of design parameters on low-temperature cracking resistance of recycled hot-mix asphalt mixtures. Materials and Structures, 58, 24, 2025, DOI: 10.1617/s11527-024-02554-0
Google Scholar
Ma T., Mahmoud E., Bahia H.U.: Estimation of reclaimed asphalt pavement binder low-temperature properties without extraction: development of testing procedure. Transportation Research Record, 2179, 1, 2010, 58-65, DOI: 10.3141/2179-07
Google Scholar
Zhou Z., Gu X., Dong Q., Ni F., Jiang Y.: Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator. Construction and Building Materials, 203, 2019, 294-303, DOI: 10.1016/j.conbuildmat.2019.01.119
Google Scholar
Katla B., Ravindra W.A., Kota S.K., Raju S.: RAP-added SMA mixtures: How do fare? Journal of Materials in Civil Engineering, 33, 8, 2021, Article ID: 04021199, DOI: 10.1061/(asce)mt.1943-5533.0003807
Google Scholar
Bańkowski W.: Evaluation of fatigue life of asphalt concrete mixtures with reclaimed asphalt pavement. Applied Sci- ences, 8, 3, 2018, Article ID: 469, DOI: 10.3390/app8030469
Google Scholar
Zaumanis M., Mallick R.B.: Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art. International Journal of Pavement Engineering, 16, 1, 2015, 39-55, DOI: 10.1080/10298436.2014.893331
Google Scholar
Gonçalves Luz P.M.S., Silva I.M., de Medeiros Melo Neto O., Lucena Dias T., de Figueiredo Lopes Lucena L.C., Sampaio R.M.B.: Analysis of the Degree of Blending (DoB) of recycled asphalt mixtures with variation in mixing temperature, type, and RAP content. Construction and Building Materials, 431, 2024, Article ID: 136577, DOI: 10.1016/j.conbuildmat.2024.136577
Google Scholar
Karlsson R., Isacsson U.: Material-related aspects of asphalt recycling – state-of-the-art. Journal of Materials in Civil Engineering, 18, 1, 2006, 81-92, DOI: 10.1061/(ASCE)0899-1561(2006)18:1(81)
Google Scholar
Zia Alavi M., Amani S., Hosseinzadeh S.: Evaluation of degree of blending and interaction between aged and virgin asphalt binders using rheological and fracture measurements, Case Studies in Construction Materials, 21, 2024, Article ID: e03528, DOI: 10.1016/j.cscm.2024.e03528
Google Scholar
Yang Y., Wang C., Yang Y.: The progress of the interfacial diffusion between virgin and aged asphalt based on molecular dynamics simulation: A review. Processes, 11, 10, 2023, Article ID: 3024, DOI: 10.3390/pr11103024
Google Scholar
Xu P., Zhang D., Liu Z., Wang F., Luan D.: Diffusion mechanism explorations on the sustainable warm mix asphalt and synchronous rejuvenated SBS-modified asphalt binder using the free volume theory. Sustainable Materials and Technologies, 41, 2024, Article ID: e01061, DOI: 10.1016/j.susmat.2024.e01061
Google Scholar
Li N., Tang W., Yu X., Zhan H., Wang X., Wang Z.: Laboratory investigation on blending process of reclaimed asphalt mixture. Construction and Building Materials. 325, 2022, Article ID: 126793, DOI: 10.1016/j.conbuildmat.2022.126793
Google Scholar
Zaumanis M., Mallick R.B., Poulikakos L., Frank R.: Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Construction and Building Materials, 71, 2014, 538-550, DOI: 10.1016/j.conbuildmat.2014.08.073
Google Scholar
Im S., Zhou F., Lee R., Scullion T.: Impacts of rejuvenators on performance and engineering properties of asphalt mixtures containing recycled materials. Construction and Building Materials, 53, 2014, 596-603, DOI: 10.1016/j.conbuildmat.2013.12.025
Google Scholar
PN-EN 13108-8:2016-07 Bituminous mixtures – Material specifications – Part 8: Reclaimed asphalt
Google Scholar
PN-EN 12697-3:2013-10 Bituminous mixtures – Test methods for hot mix asphalt – Part 3: Bitumen recovery: Rotary evaporator
Google Scholar
PN-EN 1426:2025-02 Bitumen and bituminous binders – Determination of needle penetration
Google Scholar
PN-EN 1427:2015-08 Bitumen and bituminous binders – Determination of the softening point – Ring and Ball method
Google Scholar
PN-EN 13398:2017-12 Bitumen and bituminous binders – Determination of the elastic recovery of modified bitumen
Google Scholar
PN-EN 12593:2015-08 Bitumen and bituminous binders – Determination of the Fraass breaking point
Google Scholar
PN-EN 16659:2016-02 Bitumen and Bituminous Binders – Multiple Stress Creep and Recovery Test (MSCRT)
Google Scholar
Mieczkowski P., Budziński B., Słowik M., Kempa J., Sorociak W.: Experimental study of tensile properties of Styrene-Butadiene-Styrene modified asphalt binders. Materials, 14, 7, 2021, Article ID: 1734, DOI: 10.3390/ma14071734
Google Scholar
Nguyen Q.T., Hoang T.T.N., Bui X.C., La V.C., Tran T.K.D., Nguyen Q.P., Nguyen N.H.: Mechanical properties of bitumen and asphalt mixture modified with polymer additives. Proceedings of the RILEM International Symposium on Bituminous Materials (ISBM 2020). Springer, Cham, RILEM Bookseries, 27, 2022, 1321-1326, DOI: 10.1007/978-3-030-46455-4_168
Google Scholar
PN-EN 14023:2011 Bitumen and bituminous binders – Specification framework for polymer modified bitumens
Google Scholar
Radziszewski P., Sarnowski M., Król J., Pokorski P., Jaskuła P., Ryś D., Pszczoła M.: Low-temperature requirements for bitumen in Central East European road construction. The Baltic Journal of Road and Bridge Engineering, 14, 2, 2019, 249-270, DOI: 10.7250/bjrbe.2019-14.442
Google Scholar
Rys D., Jaczewski M., Pszczola M., Jaskula P., Bankowski W.: Effect of bitumen characteristics obtained according to EN and Superpave specifications on asphalt mixture performance in low-temperature laboratory tests. Construction and Building Materials, 231, 2020, Article ID: 117156, DOI: 10.1016/j.conbuildmat.2019.117156
Google Scholar
D’Angelo J., Kluttz R., Dongré R., Stephens K., Zanzotto L.: Revision of the Superpave high temperature binder specification: the multiple stress creep recovery test. Journal of the Association of Asphalt Paving Technologists, 76, 2007, 123-162
Google Scholar
AASHTO TP 70-13 Multiple Stress Creep Recovery (MSCR) test of asphalt binder using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials, 2013, https://img.antpedia.com/standard/files/pdfs_ora/20230616/AASHTO/AASHTO%20TP%207 (available: 03.09.2025)
Google Scholar
Gajewski M., Bańkowski W., Gajewska B., Sybilski D., Horodecka R.: Estimation of asphalt binders’ resistance to permanent deformation with application of the MSCR and multiple shear creep long recovery (MSCLR) tests. Construction and Building Materials, 284, 2021, Article ID: 122808, DOI: 10.1016/j.conbuildmat.2021.122808
Google Scholar
Hossain Z., Ghosh D., Zaman M., Hobson K.: Use of the Multiple Stress Creep Recovery (MSCR) test method to characterize polymer-modified asphalt binders. Journal of Testing and Evaluation, 44, 1, 2016, 507-520, DOI: 10.1520/JTE20140061
Google Scholar
DuBois E., Mehta Y., Nolan A.: Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder. Construction and Building Materials, 65, 2014, 184-190, DOI: 10.1016/j.conbuildmat.2014.04.111
Google Scholar
Bernier A., Zofka A., Yut I.: Laboratory evaluation of rutting susceptibility of polymer-modified asphalt mixtures containing recycled pavements. Construction and Building Materials, 31, 2012, 58-66, DOI: 10.1016/j.conbuildmat.2011.12.094
Google Scholar