Salehi S., Arashpour M., Kodikara J., Guppy R.: Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. Journal of Cleaner Production, 313, 2021, Article ID: 127936, DOI: 10.1016/j.jclepro.2021.127936
DOI: https://doi.org/10.1016/j.jclepro.2021.127936
Google Scholar
Liu N., Wang Y., Bai Q., Liu Y., Wang (Slade) P., Xue S., Yu Q., Li Q.: Road life-cycle carbon dioxide emissions and emission reduction technologies: A review. Journal of Traffic and Transportation Engineering (English Edition), 9, 4, 2022, 532-555, DOI: 10.1016/j.jtte.2022.06.001
DOI: https://doi.org/10.1016/j.jtte.2022.06.001
Google Scholar
Circular Economy Action Plan, https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en, available: 15.09.2025
Google Scholar
Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Lisowski P.: Potential alkaline reactivity of sands from domestic deposits. Roads and Bridges – Drogi i Mosty, 21, 3, 2022, 253-271, DOI: 10.7409/rabdim.022.015
DOI: https://doi.org/10.7409/rabdim.022.015
Google Scholar
Shu X., Huang B.: Recycling of waste tire rubber in asphalt and portland cement concrete: an overview. Construction and Building Materials, 67, Part B, 2014, 217-224, DOI: 10.1016/j.conbuildmat.2013.11.027
DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.027
Google Scholar
Thomas B.S., Gupta R.C.: A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 2016, 1323-1333, DOI: 10.1016/j.rser.2015.10.092
DOI: https://doi.org/10.1016/j.rser.2015.10.092
Google Scholar
Muñoz-Sánchez B., Arévalo-Caballero M.J., Pacheco-Menor M.C.: Influence of acetic acid and calcium hydroxide treatments of rubber waste on the properties of rubberized mortars. Materials and Structures, 50, 75, 2017, 1-16, DOI: 10.1617/s11527-016-0912-7
DOI: https://doi.org/10.1617/s11527-016-0912-7
Google Scholar
Afshinnia K., Poursaee A.: The influence of waste crumb rubber in reducing the alkali-silica reaction in mortar bars. Journal of Building Engineering, 4, 2015, 231-236, DOI: 10.1016/j.jobe.2015.10.002.
DOI: https://doi.org/10.1016/j.jobe.2015.10.002
Google Scholar
Huang W., Huang X., Xing Q., Zhou Z.: Strength reduction factor of crumb rubber as fine aggregate replacement in concrete. Journal of Building Engineering, 32, 2020, Article ID: 101346, DOI: 10.1016/j.jobe.2020.101346
DOI: https://doi.org/10.1016/j.jobe.2020.101346
Google Scholar
Turatsinze A., Bonnet S., Granju J.L.: Potential of rubber aggregates to modify properties of cement based-mortars: Improvement in cracking shrinkage resistance. Construction and Building Materials, 21, 1, 2007, 176-181, DOI: 10.1016/j.conbuildmat.2005.06.036
DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.036
Google Scholar
Ling T.C., Nor H.M., Lim S.K.: Using recycled waste tyres in concrete paving blocks. Proceedings of the Institution of Civil Engineers – Waste and Resource Management, 163, 1, 2010, 37-45, DOI: 10.1680/warm.2010.163.1.37
DOI: https://doi.org/10.1680/warm.2010.163.1.37
Google Scholar
Najim K.B., Hall M.R.: Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Construction and Building Materials, 27, 1, 2012, 521-530, DOI: 10.1016/j.conbuildmat.2011.07.013
DOI: https://doi.org/10.1016/j.conbuildmat.2011.07.013
Google Scholar
Siddique R., Naik T.R.: Properties of concrete containing scrap-tire rubber – an overview. Waste Management, 24, 6, 2004, 563-569, DOI: 10.1016/j.wasman.2004.01.006
DOI: https://doi.org/10.1016/j.wasman.2004.01.006
Google Scholar
Gesoğlu M., Güneyisi E.: Permeability properties of self-compacting rubberized concretes. Construction and Building Materials, 25, 8, 2011, 3319-3326, DOI: 10.1016/j.conbuildmat.2011.03.021
DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.021
Google Scholar
Flores Medina D., Hernández Martínez M.C., Flores Medina N., Hernández-Olivares F.: Durability of rubberized concrete with recycled steel fibers from tyre recycling in aggresive enviroments. Construction and Building Materials, 400, 2023, Article ID: 132619, DOI: 10.1016/j.conbuildmat.2023.132619
DOI: https://doi.org/10.1016/j.conbuildmat.2023.132619
Google Scholar
Abbas S., Ahmed A., Waheed A., Abbas W., Yousaf M., Shaukat S., Alabduljabbar H., Awad Y.A.: Recycled untreated rubber waste for controlling the alkali-silica reaction in concrete. Materials, 15, 10, 2022, Article ID: 3584, DOI: 10.3390/ma15103584
DOI: https://doi.org/10.3390/ma15103584
Google Scholar
Jóźwiak-Niedźwiedzka D., Antolik A.: Assessment of highway pavement concrete suffering from alkali-silica reaction: case study. Materiales de Construcción, 72, 348, 2022, Article ID: e299, DOI: 10.3989/mc.2022.296922
DOI: https://doi.org/10.3989/mc.2022.296922
Google Scholar
Wang J., Guo Z., Yuan Q., Zhang P., Fang H.: Effects of ages on the ITZ microstructure of crumb rubber concrete. Construction and Building Materials, 254, 2020, Article ID: 119329, DOI: 10.1016/j.conbuildmat.2020.119329
DOI: https://doi.org/10.1016/j.conbuildmat.2020.119329
Google Scholar
AASHTO R 80-17 Standard practice for determining the reactivity of concrete aggregates and selecting appropriate measures for preventing deleterious expansion in new concrete construction, Washington 2018, https://img.antpedia.com/standard/files/pdfs_ora/20230616/AASHTO/AASHTO %20R%2080-17.pdf, available: 15.09.2025
Google Scholar
RILEM Recommended Test Method: AAR-2 – Detection of Potential Alkali-Reactivity – Accelerated Mortar-Bar Test Method for Aggregates. In: RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. Eds. Nixon P., Sims I., 2016, 61-77
DOI: https://doi.org/10.1007/978-94-017-7252-5_4
Google Scholar
PN-EN 196-1:2016 Methods of Testing Cement – Determination of Strength
Google Scholar
ul Haq Z., Ren T., Yue X., Formela K., Rodrigue D., Colom Fajula X., McNally T., Dawei D., Zhang Y., Wang S.: Progress in devulcanization of waste tire rubber: Upcycling towards a circular economy. Express Polymer Letters, 19, 3, 2025, 258-293, DOI: 10.3144/expresspolymlett.2025.20
DOI: https://doi.org/10.3144/expresspolymlett.2025.20
Google Scholar
Sienkiewicz M., Janik H., Borzędowska-Labuda K., KucińskaLipka J.: Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of Cleaner Production, 147, 2017, 560-571, DOI: 10.1016/j.jclepro.2017.01.121
DOI: https://doi.org/10.1016/j.jclepro.2017.01.121
Google Scholar
Smith B.C.: The infrared spectra of polymers III: hydrocarbon polymers. Spectroscopy, 36, 11, 2021, 22-25, DOI: 10.56530/spectroscopy.mh7872q7
DOI: https://doi.org/10.56530/spectroscopy.mh7872q7
Google Scholar
Ma Q., Dutta S., Wu K.C.W., Kimura T.: Analytical understanding of the materials design with well‐described shrinkages on multiscale. Chemistry – A European Journal, 24, 2018, 6886-6904, DOI: 10.1002/chem.201704198
DOI: https://doi.org/10.1002/chem.201704198
Google Scholar
Eldin N.N., Senouci A.B.: Rubber‐tire particles as concrete aggregate. Journal of Materials in Civil Engineering, 5, 4, 1993, 478-496, DOI: 10.1061/(ASCE)0899-1561(1993)5:4(478)
DOI: https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
Google Scholar
Khatib Z.K., Bayomy F.M.: Rubberized portland cement concrete. Journal of Materials in Civil Engineering, 11, 3, 1999, 206-213, DOI: 10.1061/(ASCE)0899-1561(1999)11:3(206)
DOI: https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
Google Scholar
Segre N., Joekes I.: Use of tire rubber particles as addition to cement paste. Cement and Concrete Research, 30, 9, 2000, 1421-1425, DOI: 10.1016/S0008-8846(00)00373-2
DOI: https://doi.org/10.1016/S0008-8846(00)00373-2
Google Scholar
Youssf O., ElGawady M.A., Mills J.E., Ma X.: An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Construction and Building Materials, 53, 2014, 522-532, DOI: 10.1016/j.conbuildmat.2013.12.007
DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.007
Google Scholar