Roads and Bridges - Drogi i Mosty
18, 1, 2019, 67-83

Resistance of selected aggregates from igneous rocks to alkali-silica reaction: verification

Daria Jóźwiak-Niedźwiedzka Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Aneta Antolik Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Kinga Dziedzic Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Michał A. Glinicki Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Karolina Gibas Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Published: 2019-03-31

Abstract

The paper presents investigations into the reactivity of aggregates from igneous rock, carried out in accordance with the procedures contained in the GDDKiA General Technical Specification "Concrete pavements". The aim of the investigations was evaluation of the suitability of the aggregates for road structures and pavements built using cement based concrete technology. Aggregates produced from extrusive rocks (basalt, melaphyre and porphyry) and from intrusive rocks (granite and gabbro) were analysed. The mineral composition of the aggregates was evaluated with regard to their reactive SiO2 content. Expansion tests on mortar bar and concrete prism specimens with analysed aggregates and a microscopic analysis of the alkali-aggregate reaction products were carried out. A considerable amount of reactive minerals: chalcedony, tridymite and microcrystalline quartz and volcanic glass were found in the grains of the porphyry and melaphyre aggregates. On the basis of the conducted investigations the two aggregates made of igneous rocks (melaphyre and porphyry) were classified into category R1 (moderately reactive). The basalt aggregate, the granite aggregate and the gabbro aggregate were assigned to category R0 (non-reactive).

Keywords


aggregate, alkali reactivity, alkali silica gel, cristobalite, igneous rocks, microcrystalline quartz, reactive minerals.

Full Text:

PDF

References


Kukielska D., Góralczyk S.: Reaktywność alkaliczna kruszyw, Mining Science - Mineral Aggregates, 22, 1, 2015, 101-110

Glinicki M.A., Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Gibas K.: Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction. Roads and Bridges - Drogi i Mosty, 18, 1, 2019, 5-24, DOI: 10.7409/rabdim.019.001

Praca zbiorowa pod redakcją Szuflickiego M., Malon A., Tymińskiego M.: Bilans zasobów złóż kopalin w Polsce wg stanu na 31.12.2017 r. Państwowa Służba Geologiczna, Państwowy Instytut Geologiczny, Warszawa, 2018

Rembiś M.: Mineralno-teksturalna zmienność wybranych skał bazaltowych Dolnego Śląska i jej rola w kształ- towaniu fizyczno-mechanicznych właściwości produkowanych kruszyw. Gospodarka Surowcami Mineralnymi, Tom 27, Zeszyt 3, 2011, 29-49

Góralczyk S., Pabich A.: Analiza jakości krajowych kruszyw. Kruszywa Mineralne t. 2. Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2018, 49-60

Fernandes I., Broekmans M.A.T.M., Nixon P., Sims I., Ribeiro M.A., Břrge F.N.F.: Alkali-silica reactivity of some common rock types a global petrographic atlas. In: Drimalas T., Ideker J.H., Fournier B. (Eds.), The 14th International Conference on Alkali-Aggregate Reactions in Concrete, Austin, Texas, USA, 2012

Medeiros S., Fernandes I., Nunes J.C., Fournier B., Santos Silva A., Soares D., Ramos V.: The study of the Azorean volcanic aggregates from the point of view of alkali silica reaction. The 15th International Conference on Alkali-Aggregates Reaction, Sao-Paulo, Brazil, 2016

Katayama T., St John D.A., Futagawa T.: The petrographic comparison of rocks from Japan and New Zealand-Potential reactivity related to interstitial glass and silica minerals. In: Okada K., Nishibayashi S. and Kawamura M. (Eds.), Proceedings of The 8th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Kyoto, Japan, 1989, 537-542

Batic O., Maiza P., Sota J.: Alkali silica reaction in basaltic rocks NBRI method. Cement and Concrete Research, 24, 7, 1994, 1317-1326

Castro N., Fernandes I., Santos Silva A.: Alkali reactivity of granitic rocks in Portugal: A case study. 12th Euroseminar on Microscopy Applied to Building Material, Dortmund, Germany, 15-19 September 2009, 62-72

Hagelia P., Fernandes I.: On the AAR susceptibility of granitic and quartzitic aggregates in view of petrographic characteristics and accelerated testing. In: Drimalas T., Ideker J.H., Fournier B. (Eds.), The 14th International Conference on Alkali-Aggregate Reactions in Concrete, Austin, Texas, USA

Fatt N.T., Raj J.K., Ghani A.A.: Potential Alkali-Reactivity of Granite Aggregates in the Bukit Lagong Area, Selangor, Peninsular Malaysia. Sains Malaysiana, 42, 6, 2013, 773-781

Fernandes I., dos Anjos Ribeiro M., Broekmans M.A.T.M., Sims I. (Eds.): Petrographic Atlas: Characterisation of Aggregates Regarding Potential Reactivity to Alkalis. RILEM, Springer, Dordrecht, 2016

Wenk H.R., Monteiro P.J.M., Shomglin K.: Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from Santa Rosa mylonite zone. Journal of Materials and Science, 43, 2008, 1278-1285

Kerrick D., Hooton R.: ASR of concrete aggregate quarried from a fault zone: results and petrographic interpretation of accelerated mortar bar tests. Cement and Concrete Research, 22, 1992, 949-960

Wakizaka Y.: Alkali-silica reactivity of Japanese rocks. Engineering Geology, 56, 2000, 211-221

RILEM Recommended Test Method: AAR-2-Detection of Potential Alkali-Reactivity-Accelerated Mortar-Bar Test Method for Aggregates, RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. State-of-the-Art Report of the RILEM Technical Committee 219-ACS Vol. 17, Nixon P.J. and Sims I. (Eds.), Springer, 2016

Ogólna Specyfikacja Techniczna, D-05.03.04: Nawierzchnia z betonu cementowego, Załącznik nr 1: Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 N roztworze NaOH w temperaturze 80°C. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2018

Ogólna Specyfikacja Techniczna, D-05.03.04: Nawierzchnia z betonu cementowego, Załącznik nr 2: Instrukcja badania reaktywności kruszyw w temperaturze 38°C według ASTM C1293/RILEM AAR-3. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2018

Naziemiec Z., Pabiś-Mazgaj E.: Preliminary evaluation of the alkali reactivity of crushed aggregates from glacial deposits in Northern Poland. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 203-222, DOI: 10.7409/rabdim.017.014

Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendations. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 223-239, DOI: 10.7409/rabdim.017.015

Praca zbiorowa pod redakcją Maneckiego A., Muszyńskiego M.: Przewodnik do petrografii. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2008

Ogólna Specyfikacja Techniczna D-05.03.04 Nawierzchnia z Betonu Cementowego. Generalna Dyrekcja Dróg Krajowych i Autostrad, Załącznik Nr 1 do Zarządzenia Nr 23 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 7 Czerwca 2018 r.

Carles-Gibergues A., Cyr M.: Interpretation of Expansion Curves of Concrete Subjected to Accelerated Alkali-Aggregate Reaction (AAR) Tests. Cement and Concrete Research, 32, 2002, 691-700

Li Ch., Ideker J.H., Thomas M.D.A.: Observations on Using Expanded Clay to Control the Expansion Caused by Alkali-Silica Reaction. Proceedings of the 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo, Brazil, 3-7 July 2016

Fournier B., Bérubé M.A., Frenette J.: Laboratory Investigations for Evaluating Potential Alkali-Reactivity of Aggregates and Selecting Preventive Measures Against Alkali-Aggregate Reactions (AAR). What Do They Really Mean? Proceedings of The 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec City, QC, Canada, 11-16 June 2000, 287-296

Santos Silva A., Fernandes I., Soares D., Custódio J., Bettencourt Ribeiro A., Ramos V., Medeiros S.: Portuguese experience in ASR aggregate assessment. The 15th International Conference on Alkali-Aggregate Reaction, Săo Paulo, Brazil, July 03-07, 2016

de Paiva Gomes Neto D., Conceiçăo H., Carvalho Lisboa V.A., Soares de Santana R., Silva Barreto L.: Influence of Granitic Aggregates from Northeast Brazil on the Alkali-aggregate Reaction. Materials Research, 17 (Suppl. 1), 2014, 51-58, DOI: 10.1590/S1516-14392014005000045

Owsiak Z.: Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate. Cement and Concrete Research, 34, 2004, 7-11

Piasta W., Góra J., Turkiewicz T.: Properties and durability of coarse igneous rock aggregates and concretes. Construction and Building Materials, 126, 2016, 119-129

Naziemiec Z., Garbacik A., Adamski G.: Długoterminowe badania reaktywności alkalicznej krajowych kruszyw. Kruszywa Mineralne t. 2. Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2018, 151-160

Góralczyk S., Filipczyk M.: Aktualne badania reaktywności alkalicznej polskich kruszyw-część II. Kruszywa Mineralne t.2. Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2018, 37-48

PN-91/B-06714/34 Kruszywa mineralne. Badania. Oznaczanie reaktywności alkalicznej, 1991


Resistance of selected aggregates from igneous rocks to alkali-silica reaction: verification

  
Jóźwiak-Niedźwiedzka, Daria et al. Resistance of selected aggregates from igneous rocks to alkali-silica reaction: verification. Roads and Bridges - Drogi i Mosty, [S.l.], v. 18, n. 1, p. 67-83, mar. 2019. ISSN 2449-769X. Available at: <>. Date accessed: 19 Mar. 2024. doi:http://dx.doi.org/10.7409/rabdim.019.005.