Jamroz K., Romanowska A., Michalski L., Żukowska J.: Vision zero in Poland. In: The vision zero handbook. Springer International Publishing, Cham, 2023, 359-397, DOI: 10.1007/978-3-030-76505-7_14
DOI: https://doi.org/10.1007/978-3-030-76505-7_14
Google Scholar
Jamroz K., Budzyński M., Romanowska A., Żukowska J., Oskarbski J., Kustra W.: Experiences and challenges in fatality reduction on polish roads. Sustainability, 11, 4, 2019, Article ID: 959, DOI: 10.3390/su11040959
DOI: https://doi.org/10.3390/su11040959
Google Scholar
Björnberg K.E., Hansson S.O., Belin M.Å., Tingvall C.: The vision zero handbook: Theory, technology and management for a zero casualty policy. Springer Nature, Berlin/Heidelberg, Germany, 2022, DOI: 10.1007/978-3-030-76505-7
DOI: https://doi.org/10.1007/978-3-030-76505-7
Google Scholar
Global Launch: Decade of action for road safety 2011-2020. World Health Organization, 2011
Google Scholar
Regional approach to the decade of action for road safety 2021-2030. World Health Organization, 2021
Google Scholar
Michalski L., Jamroz K., Żukowska J.: UN Decade of action for road safety in the national road safety strategy until 2020 – Polish approach. Proceedings of 16th Road Safety on Four Continents Conference, Beijing, China, 2013, Kent Gustafson Linkoping: VTI, The Swedish National Road and Transport Research Institute, 2013, 1-10
Google Scholar
Hell W., Bodewig K., Hammer U., Kellner C., Klinke C., Mück M., Schreiner M., Walz F., Zielke G.: Vision zero in Germany. In: The vision zero handbook: Theory, technology and management for a zero casualty policy. Springer International Publishing, Cham, 2022, 337-357, DOI: 10.1007/978-3-030-76505-7_13
DOI: https://doi.org/10.1007/978-3-030-76505-7_13
Google Scholar
Žuraulis V., Pumputis V.: Vision zero in Lithuania. In: The vision zero handbook. Springer International, 2023, 398-438, DOI: 10.1007/978-3-030-23176-7_15-1
DOI: https://doi.org/10.1007/978-3-030-76505-7_15
Google Scholar
Benlagha N., Charfeddine L.: Risk factors of road accident severity and the development of a new system for prevention: New insights from China. Accident Analysis & Prevention, 136, 2020, Article ID: 105411, DOI:10.1016/j.aap.2019.105411
DOI: https://doi.org/10.1016/j.aap.2019.105411
Google Scholar
Chui K.T., Kochhar T.S., Chhabra A., Singh S.K., Singh D., Peraković D., Almomani A., Arya V.: Traffic accident prevention in low visibility conditions using VANeTs Cloud environment. International Journal of Cloud Applications and Computing, 12, 1, 2022, 1-21, DOI: 10.4018/IJCAC.313572
DOI: https://doi.org/10.4018/IJCAC.313572
Google Scholar
Kaygisiz Ö., Düzgün Ş., Yildiz A., Senbil M.: Spatio-temporal accident analysis for accident prevention in relation to behavioral factors in driving: The case of South Anatolian Motorway. Transportation Research Part F: Traffic Psychology and Behaviour, 33, 2015, 128-140, DOI: 10.1016/j.trf.2015.07.002
DOI: https://doi.org/10.1016/j.trf.2015.07.002
Google Scholar
McFarland R.A., Moore R.C.: Accidents and accident prevention. Annual Review of Medicine, 13, 1, 1962, 371-388, DOI: 10.1146/annurev.me.13.020162.002103
DOI: https://doi.org/10.1146/annurev.me.13.020162.002103
Google Scholar
Molan G., Molan M.: Theoretical model for accident prevention based on root cause analysis with graph theory. Safety and Health at Work, 12, 1, 2021, 42-50, DOI: 10.1016/j.shaw.2020.09.004
DOI: https://doi.org/10.1016/j.shaw.2020.09.004
Google Scholar
Noh B., Yeo H.: A novel method of predictive collision risk area estimation for proactive pedestrian accident prevention system in urban surveillance infrastructure. Transportation research part C: Emerging Technologies, 137, 2022, Article ID: 103570, DOI: 10.1016/j.trc.2022.103570
DOI: https://doi.org/10.1016/j.trc.2022.103570
Google Scholar
von Beesten S., Bresges A., Lubert D.: Effectiveness of educational interventions in minimizing reactance in traffic accident prevention. Frontiers in Education, 8, 2024, Article ID: 1276380, DOI: 10.3389/feduc.2023.1276380
DOI: https://doi.org/10.3389/feduc.2023.1276380
Google Scholar
Yang Y., Zhang Y., Zheng T., Tian Q.: Research on traffic accident prediction of expressway tunnel based on B-NB model. Traffic Injury Prevention, 25, 3, 2024, 527-536, DOI: 10.1080/15389588.2024.2310584
DOI: https://doi.org/10.1080/15389588.2024.2310584
Google Scholar
Zou X., Vu H.L., Huang H.: Fifty years of accident analysis & prevention: A bibliometric and scientometric overview. Accident Analysis & Prevention, 144, 2020, Article ID: 105568, DOI: 10.1016/j.aap.2020.105568
DOI: https://doi.org/10.1016/j.aap.2020.105568
Google Scholar
Miller T.R., Levy D.T., Swedler D.I.: Lives saved by laws and regulations that resulted from the Bloomberg road safety program. Accident Analysis & Prevention, 113, 2018, 131-136, DOI: 10.1016/j.aap.2018.01.014
DOI: https://doi.org/10.1016/j.aap.2018.01.014
Google Scholar
Dong C., Nambisan S.S., Clarke D.B., Sun J.: Exploring the effects of state highway safety laws and sociocultural characteristics on fatal crashes. Traffic Injury Prevention, 18, 3, 2017, 299-305, DOI: 10.1080/15389588.2016.1199864
DOI: https://doi.org/10.1080/15389588.2016.1199864
Google Scholar
Karimpour A., Kluger R., Liu C., Wu Y.J.: Effects of speed feedback signs and law enforcement on driver speed. Transportation Research Part F: Traffic Psychology and Behaviour, 77, 2021, 55-72, DOI: 10.1016/j.trf.2020.11.011
DOI: https://doi.org/10.1016/j.trf.2020.11.011
Google Scholar
Voas R.B., Tippetts A.S., Fell J.C.: Assessing the effectiveness of minimum legal drinking age and zero tolerance laws in the United States. Accident Analysis & Prevention, 35, 4, 2003, 579-587, DOI: 10.1016/S0001-4575(02)00038-6
DOI: https://doi.org/10.1016/S0001-4575(02)00038-6
Google Scholar
Wagenaar A.C., Maldonado-Molina M.M., Erickson D.J., Ma L., Tobler A.L., Komro K.A.: General deterrence effects of US statutory DUI fine and jail penalties: Long-term follow-up in 32 states. Accident Analysis & Prevention 39, 5, 2007, 982-994, DOI: 10.1016/j.aap.2007.01.003
DOI: https://doi.org/10.1016/j.aap.2007.01.003
Google Scholar
Francesconi M., James J.: None for the Road? Stricter drink driving laws and road accidents. Journal of Health Economics, 79, 2021, Article ID: 102487, DOI: 10.1016/j.jhealeco.2021.102487
DOI: https://doi.org/10.1016/j.jhealeco.2021.102487
Google Scholar
Jomar R.T., Ramos D. de O., Fonseca V.A. de O., Junger W.L.: Effect of the zero-tolerance drinking and driving law on mortality due to road traffic accidents according to the type of victim, sex, and age in Rio de Janeiro, Brazil: An interrupted time series study. Traffic Injury Prevention, 20, 3, 2019, 227-232, DOI: 10.1080/15389588.2019.1576035
DOI: https://doi.org/10.1080/15389588.2019.1576035
Google Scholar
Goodwin A.H., O’Brien N.P., Foss R.D.: Effect of North Carolina’s restriction on teenage driver cell phone use two years after implementation. Accident Analysis & Prevention, 48, 2012, 363-367, DOI: 10.1016/j.aap.2012.02.006
DOI: https://doi.org/10.1016/j.aap.2012.02.006
Google Scholar
Doucette M.L., Tucker A., Auguste M.E., Watkins A., Green C., Pereira F.E., Borrup K.T., Shapiro D., Lapidus G.: Initial impact of COVID-19’s stay-at-home order on motor vehicle traffic and crash patterns in Connecticut: An interrupted time series analysis. Injury Prevention, 27, 1, 2021, 3-9, DOI: 10.1136/injuryprev-2020-043945
DOI: https://doi.org/10.1136/injuryprev-2020-043945
Google Scholar
Qureshi A.I., Huang W., Khan S., Lobanova I., Siddiq F., Gomez C.R., Suri M.F.K.: Mandated societal lockdown and road traffic accidents. Accident Analysis & Prevention, 146, 2020, Article ID: 105747, DOI: 10.1016/j.aap.2020.105747
DOI: https://doi.org/10.1016/j.aap.2020.105747
Google Scholar
Schaffer A.L., Dobbins T.A., Pearson S.A.: Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21, 58, 2021, DOI: 10.1186/s12874-021-01235-8
DOI: https://doi.org/10.1186/s12874-021-01235-8
Google Scholar
Aho K., Derryberry D., Peterson T.: Model selection for ecologists: The worldviews of AIC and BIC. Ecology, 95, 3, 2014, 631-636, DOI: 10.1890/13-1452.1
DOI: https://doi.org/10.1890/13-1452.1
Google Scholar
Box G.E.P., Pierce D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65, 332, 1970, 1509-1526, DOI: 10.1080/01621459.1970.10481180
DOI: https://doi.org/10.1080/01621459.1970.10481180
Google Scholar
Raporty o stanie BRD. Krajowa Rada Bezpieczeństwa Ruchu Drogowego, https://www.krbrd.gov.pl/baza-wiedzy/raporty- o-stanie-brd/, available: 15.03.2024
Google Scholar
Statistika nehodovosti. Policie České Republiky, https://www.policie.cz/clanek/statistika-nehodovosti-900835.aspx?q=Y2hudW09NQ%3d%3d, available: 15.03.2024
Google Scholar
Eismo įvykių Lietuvoje statistika. Lietuvos Kelių Policijos Tarnyba, https://policija.lrv.lt/lt/veiklos-sritys/eismo-saugumas -1/eismo-statistika/eismo-ivykiu-lietuvoje-statistika/, available: 15.03.2024
Google Scholar
Rázcestník štatistík dopravnej nehodovosti – kompletná štatistika. Ministerstvo Vnútra Slovenskej Republiky, https://www.minv.sk/?kompletna-statistika, available: 15.03.2024
Google Scholar
Gesellschaft und Umwelt – Verkehrsunfälle. Statistisches Bundesamt, https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html#sprg230562, available: 15.03.2024
Google Scholar
SCPR – dane z roku 2022. Generalna Dyrekcja Dróg Krajowych i Autostrad, https://www.gov.pl/web/gddkia/scpr-dane-z-roku-2022, available: 15.03.2024
Google Scholar
Badania kosztów zdarzeń drogowych. Krajowa Rada Bezpieczeństwa Ruchu Drogowego, https://www.krbrd.gov.pl/baza-wiedzy/badania-kosztow-zdarzen-drogowych/, available: 15.03.2024
Google Scholar