Roads and Bridges - Drogi i Mosty
21, 3, 2022, 183-201

Analysis of causes of damage to single-layer concrete highway pavement

Michał A. Glinicki Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Daria Jóźwiak-Niedźwiedzka Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Aneta Antolik Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Kinga Dziedzic Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Mariusz Dąbrowski Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Karolina Bogusz Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Paweł Lisowski Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Published: 2022-09-22

Abstract

Premature damage to the concrete pavement of a trunk road section after 15 years of its service life was noticed. The damage manifested itself in cracking along transverse joints and in the corners of slabs. Diagnostic investigations, covering a petrographic analysis of concrete and mineral aggregates by means of optical and scanning microscopy, an evaluation of the elastic properties, the degree of cracking and air-void parameters and an identification of the alkali-silica reaction products, were carried out on core samples. Multiple cracks in coarse quartzite aggregate particles and in cement matrix were found. A significant presence of microcrystalline and cryptocrystalline quartz in quartzite particles was detected. Typical alkali-silica reaction products were unambiguously identified. The considerable cracking and the substantial decrease in the modulus of elasticity were correlated with the presence of reactive quartz in the quartzite aggregate and the alkali-silica reaction was found to be the main cause of the damage. Additional damaging factors, such as heavy traffic loads and frost aggression, are discussed.

Keywords


concrete, road pavement, pavement evaluation, aggregate, quartzite, alkali-silica reaction, cracks, service life.

Full Text:

PDF PDF

References


Szydło A., Mackiewicz P., Wardęga R., Krawczyk B.: Katalog typowych konstrukcji nawierzchni sztywnych, Załącznik do zarządzenia Nr 30 Generalnego Dyrektora Dróg Krajowych i Autostrad, Warszawa, 16.06.2014

Amirkhanian A., Skelton E. (eds.): Proceedings of the 12th International Conference on Concrete Pavements, 27.09.2921 – 01.10.2021, Minneapolis, DOI: 10.33593/i1c2cp

Korentz J., Jurczak R., Szmatuła F., Rudnicki T.: Właściwości nawierzchni betonowej autostrady A18 po 82 latach eksploatacji. Budownictwo, Technologie, Architektura, 96, 4, 2021, 68-71

Van Dam T.J., Sutter L.L., Smith K.D., Wade M.J., Peterson K.R.: Guidelines for detection, analysis and treatment of materials-related distress in concrete pavements. Final report, volume 1, FHWA-RD-01-163, 2002

Sims I., Poole A.B. (eds.): Alkali-Aggregate Reaction in Concrete: A World Review. CRC Press, London 2017

Owsiak Z., Zapała-Sławeta J., Czapik P.: Diagnosis of concrete structures distress due to alkali-aggregate reaction. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63, 1, 2015, 23-29

Glinicki M.A., Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Gibas K.: Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction. Roads and Bridges - Drogi i Mosty, 18, 1, 2019, 5-24; DOI: 10.7409/rabdim.019.001

Fishboeck E.K., Harmuth H.: An Austrian experience with identification and assessment of alkali-reaction in motorways, in: Concrete Repair, Rehabilitation and Retrofitting II, edited by M. Alexander, H.D. Beushausen, F. Dehn, P. Moyo, Taylor and Francis Group, London, 2009

Allard A., Fournier B., Bastien J., Bissonnette B., Sanchez L. , Duchesne J.: Evaluation of the degree of damage caused by alkali-silica reaction in a highway pavement: a case study. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo, 2016

Fournier B., Bérubé M.A., Folliard K.J., Thomas M.: Report on the Diagnosis, Prognosis, and Mitigation of Alkali-Silica Reaction (ASR) in Transportation Structures. FHWA, Washington, DC, 2010

Mielich O.: Alkali-silica reaction (ASR) on German motorways: an overview. Otto-Graf-Journal, 18, 2019, 197-208

Breitenbücher R., Przondziono R., Meng B., Krütt E., Weise F.: Alkali-Silica-Reaction in concrete pavements considering traffic and de-icing agents. 13th International Symposium on Concrete Roads, Berlin, June 2018

Frýbort A., Všianský D., Štulířová J., Stryk J., Gregerová M.: Variations in the composition and relations between alkali-silica gels and calcium silicate hydrates in highway concrete. Materials Characterization, 137, 2018, 91-108

Góralczyk S.: Occurrence and assessment of reactive aggregates in Poland. Institute of Mechanized Construction and Rock Mining, Warsaw, 2003

Bebłacz D., Kamiński P., Młynarczyk Z.: Analiza wybranych właściwości mieszanki betonowej i betonu stosowanego do budowy betonowych nawierzchni drogowych wykonanych w kraju w latach 2001-2004. Badania i analiza trwałości betonu stosowanego do nawierzchni drogowych pod kątem oceny cech użytkowych i trwałościowych. Etap I. IBDiM, Warszawa, 2004

PN-B-06714-46:1992 Kruszywa mineralne – Badania – Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką

Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendations. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 223-239, DOI: 10.7409/rabdim.017.015

Glinicki M.A.: Methods of qualitative and quantitative assessment of concrete air entrainment. Cement Wapno Beton, 19/81, 6, 2014, 359-369

Procedura badawcza GDDKiA PB/3/18 – Zalecenia dotyczące analizy petrograficznej kruszywa. GDDKiA Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne

Garbacik A., Glinicki M.A., Jóźwiak-Niedźwiedzka D., Adamski G., Gibas K.: Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. ICiMB i IPPT PAN, Kraków-Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne

Glinicki M.A., Litorowicz A.: Crack system evaluation in concrete elements at mesoscale. Bulletin of the Polish Academy of Sciences – Technical Sciences, 54, 4, 2006, 371-379

ASTM C215-14 Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens, ASTM International, West Conshohocken, PA, 2014

PN-EN 480-11:2008 Admixtures for concrete, mortar and grout. Test methods. Determination of air void characteristics in hardened concrete

Katayama T.: Chapter 6. Accelerated expansion test: Japan, in: V. Saouma (ed.), Diagnosis and Prognosis of Alkali Aggregate Reactions Affected Structures – State of the art report of the RILEM Technical Committee 259-ISR. Springer International Publishing, 2021, 133-162

Procedura badawcza GDDKiA PB/2/18 – Instrukcja badania reaktywności kruszyw w temperaturze 38°C według ASTM C1293/RILEM AAR-3. GDDKiA Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne

Procedura badawcza GDDKiA PB/1/18 – Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 M roztworze NaOH w temperaturze 80°C. GDDKiA Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne

Fernandes I., Ribeiro M.A., Broekmans M.A.T.M., Sims I. (Eds.): Petrographic Atlas: Characterisation of Aggregates Regarding Potential Reactivity to Alkalis. RILEM 2016

Boehm-Courjault E., Barbotin S., Leemann A., Scrivener K.: Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy. Cement and Concrete Research, 130, 2020, 105988

Owsiak Z.: Microstructure of alkali-silica reaction products in conventional standard and accelerated testing. Ceramics - Silikaty, 47, 3, 2003, 108-115

Radlinski M., Olek J., Del Mar Arribas M. et al.: Influence of air-void system parameters on freeze-thaw resistance of pavement concrete-lessons learned from field and laboratory observations. Proceedings of the 9th International Conference on Concrete Pavements, San Francisco, 2008, 824-835

Marks M., Jóźwiak-Niedźwiedzka D., Glinicki M.A., Olek J., Marks M.: Assesment of scaling durability of concrete with CFBC ash by automatic classification rules. Journal of Materials in Civil Engineering, 24, 7, 2012, 860-867

International Federation for Structural Concrete (fib-Fédération Internationale du Béton), fib Model Code for Concrete Structures. Ernst & Sohn, Berlin, 2010

Gholizadeh-Vayghan A., Rajabipour F.: The influence of alkali-silica reaction (ASR) gel composition on its hydrophilic properties and free swelling in contact with water vapour. Cement and Concrete Research, 94, 2017, 49-583, DOI: 10.1016/j.cemconres.2017.01.006

Poole A.B.: Introduction, chemistry and mechanisms, in: I. Sims, A.B. Poole (eds.), Alkali-Aggregate Reaction in Concrete: A World Review. CRC Press, London 2017, 1-31

Šachlová Š., Kuchaová A., Pertold Z., Přikryl R.: Microscopic and chemical characterisation of ASR induced by quartz-rich aggregates. 15th Euroseminar on Microscopy Applied to Building Materials, 16-19 June 2014, Delft, 1-10

Šachlová Š., Kuchaová A., Přikryl R., Pertold Z., Nekvasilová Z.: Factors affecting ASR potential of quartzite from a single quarry (Bohemian Massif, Czech Republic). Conference: 12th SGA Biennial Meeting, 12-15 August 2013, Uppsala, Sweden, Proceedings “Mineral deposit research for a high-tech world”, vol. 4, 1833-1836, DOI: 10.13140/2.1.4690.6561

Castro N., Wigum B.J.: Assessment of the potential alkali-reactivity of aggregates for concrete by image analysis petrography. Cement and Concrete Research, 42, 2012, 1635-1644

Breitenbücher R., Sievering C.: Risse in Betonfahrbahndecken – Das Resultat aus Überlagerungen verschiedener, in: R. Nothnagel and H. Twelmeier (eds.), Baustoff und Konstruktion. Springer-Verlag Berlin Heidelberg 2013, 177-188; DOI: 10.1007/978-3-642-29573-7_19

Giebson C., Voland K., Ludwig H.M., Meng B.: Alkali-silica reaction performance testing of concrete considering external alkalis and pre-existing microcracks. Structural Concrete, 18, 4, 2017, 1-11, DOI: 10.1002/suco.201600173

Gong F., Takahashi Y., Segawa I., Maekawa K.: Mechanical properties of concrete with smeared cracking by alkali-silica reaction and freeze-thaw cycles. Cement and Concrete Composites, 111, 2020, 103623, DOI: 10.1016/j.cemconcomp.2020.103623

Borchers I.: Recommendation of RILEM TC 258-AAA: RILEM AAR-12: determination of binder combinations for non-reactive mix design or the resistance to alkali-silica reaction of concrete mixes using concrete prisms – 60°C test method with alkali supply. Materials and Structures, 54, 6, 2021, article no. 202

Böhm M., Eickschen E., Hermerschmidt W., Müller C., Pierkes R.: Beurteilung von Betonfahrbahndecken hinsichtlich deren in-situ AKR-Potenzial bei Gesteinskörnungen nach dem ARS Nr. 04/2013, Berichte der Bundesanstalt für Straßenwesen. Straßenbau, Heft S162, 2021


1. tablica 3

  tablica 3
Download (13KB)

2. rysunki z podpisami

  rysunki z podpisami
Download (1MB)

3. text final

  text final
Download (58KB)

4. table 3

  table 3
Download (13KB)

5. figures with captions

  figures with captions
Download (36MB)

6. pdf complete

  pdf complete
Download (2MB)

Analysis of causes of damage to single-layer concrete highway pavement

  
Glinicki, Michał A. et al. Analysis of causes of damage to single-layer concrete highway pavement. Roads and Bridges - Drogi i Mosty, [S.l.], v. 21, n. 3, p. 183-201, sep. 2022. ISSN 2449-769X. Available at: <>. Date accessed: 18 Apr. 2024. doi:http://dx.doi.org/10.7409/rabdim.022.011.