Helmerich R., Bässler R., Buhr B., Holm G., Krüger M., Niederleithinger E., Brühwiler E.: NDT-Toolbox (Non Destructive Testing Toolbox). Sustainable Bridges SB 3.16, 2007, available online: https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75312 (available: 01.09.2025)
Google Scholar
Helmerich R., Jan B., Casas J.R., Cruz P., Holm G., Geir H., Buhr B.: Guideline for inspection and condition assessment of existing European railway bridges. Sustainable Bridges: Including advices on the use of non-destructive testing, 2007, https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74579 (available: 01.09.2025)
Google Scholar
Elfgren L.: Defects in railway bridges and procedures for maintenance. UIC Code 778-4R, 2009, https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-23547 (available: 01.09.2025)
Google Scholar
Taeby M., Mehrabi A.B.: Risk-based selection of inspection method for external post- tensioning system of bridges. Applied Sciences, 12, 14, 2022, Article ID: 7103, DOI: 10.3390/app12147103
Google Scholar
Karthik M.M., Terzioglu T., Hurlebaus S., Hueste M.B., Weischedel H., Stamm R.: Magnetic flux leakage technique to detect loss in metallic area in external post-tensioning systems. Engineering Structures, 201, 2019, Article ID: 109765, DOI: 10.1016/j.engstruct.2019.109765
Google Scholar
Topczewski L.: Improvement and application of Ground Penetrating Radar Non-Destructive Technique for the concrete bridge inspection. PhD Thesis, University of Minho, 2007
Google Scholar
Becht A., Tronicke J., Appel E., Dietrich P.: Inversion strategy in crosshole radar tomography using information of data subsets. Geophysics, 69, 1, 2004, 222-230, DOI: 10.1190/1.1649390
Google Scholar
Brauchler R., Liedl R., Appel E.: A travel time based hydraulic tomographic approach. Water Resources Research, 39, 12, 2003, Article ID: 1370, DOI: 10.1029/2003WR002262
Google Scholar
Tronicke J., Tweeton D.R., Dietrich P., Appel E.: Improved crosshole radar tomography by using direct and reflected arrival times. Journal of Applied Geophysics, 47, 2, 2001, 97-105, DOI: 10.1016/S0926-9851(01)00050-7
Google Scholar
Tronicke J., Dietrich P., Appel E.: Quality improvement of crosshole georadar tomography: pre- and post-inversion data analysis strategies. European Journal of Environmental and Engineering Geophysics, 7, 2002, 59-73
Google Scholar
Tronicke J., Knoll M.D.: Vertical radar profiling: influence of survey geometry on first-arrival traveltimes and amplitudes. Journal of Applied Geophysics, 57, 3, 2005, 179-191, DOI: 10.1016/j.jappgeo.2004.11.001
Google Scholar
Jeon D., Yoon S.: Electrical Resistance Tomography (ERT) for concrete structure applications: A review. Buildings, 14, 9, 2024, Article ID: 2654, DOI: 10.3390/buildings14092654
Google Scholar
Fernandes F.M.: Evaluation of two novel NDT techniques: microdrilling of clay bricks and ground penetrating radar in masonry. PhD Thesis, University of Minho, 2006
Google Scholar
Vicente M.A., Mínguez J., González D.C.: The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Computed Tomography - Advanced Applications, InTechOpen, London, 2017, DOI: 10.5772/intechopen.69245
Google Scholar
Pimentel M.: Numerical modelling for safety examination of existing concrete bridges. PhD Thesis, University of Porto, 2011
Google Scholar
Pimentel M., Figueiras J., Mariscotti M., Thieberger P.: Gamma-ray inspection of post tensioning cables in a concrete bridge. In: Proceedings of the 13th International Conference on Structural Faults and Repair - 2010, Engineering Technics Press, Forde M.C. (Ed), Edinburgh, 2010, https://www.researchgate.net/profile/Mario-Mariscotti/publication/264879530_GAMMA-RAY_INSPECTION_OF_POST_TENSIONING_CABLES_IN_A_CONCRETE_BRIDGE/links/543fc2ca0cf2fd72f99da3dd/GAMMA-RAY-INSPECTION-OF-POST-TENSIONING-CABLES-IN-A-CONCRETE-BRIDGE.pdf, available: 01.09.2025
Google Scholar
Mariscotti M.A.J.: Patent No. US5828723 Process for determining the internal three-dimensional structure of a body opaque to visible light by means of radiations from a single source, specially suitable for reinforced concrete parts. Tomografia de Hormigón Armado S.A., date of publication: 27.10.1998
Google Scholar
Thieberger P., Mariscotti M.A.J., Ruffolo M.D., Frigerio T.: Patent No. WO2008060398A2 Method and arrangement for improving tomographic determinations, particularly suitable for inspection of steel reinforcement bars in concrete structures. Tomografia de Hormigón Armado S.A., date of publication: 22.05.2008
Google Scholar
https://infotechnology.fhwa.dot.gov/radiography-rad-tendons/ (available: 26.04.2025)
Google Scholar
Mariscotti M.A.J., Jalinoos F., Frigerior T., Ruffolo M., Thieberger P.: Gamma-ray imaging for void and corrosion assessment. ACI Concrete International, 31, 11, 2009, 48-53
Google Scholar
Derobert X., Aubagnac C., Abraham O.: Comparison of NDT techniques on a post-tensioned beam before its autopsy. NDT & E International, 35, 8, 2002, 541-548, DOI: 10.1016/S0963-8695(02)00027-0
Google Scholar
Binda L., Saisi A., Tiraboschi C., Valle S., Colla C., Forde M.: Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Construction and Building Materials, 17, 8, 2003, 613-627, DOI: 10.1016/S0950-0618(03)00056-4
Google Scholar
Berryman J.G.: Lecture notes on nonlinear inversion and tomography. University of California, Lawrence Livermore National Laboratory, Livermore, US, 1991, https://www.geokniga.org/bookfiles/geokniga-lecturenotesonnonlinearinversionandtomography1boreholeseismictomography.pdf (available: 08.05.2025)
Google Scholar
Buyukozturk O.: Imaging of concrete structures. NDT & E International, 31, 4, 1998, 233-243, DOI: 10.1016/S0963-8695(98)00012-7
Google Scholar
Kak A.C., Slane M.: Principles of computerized tomographic imaging. Institute for Electrical and Electronic Engineers, IEEE Press, 1998, https://www.slaney.org/pct/pct-toc.html (available: 08.05.2025)
Google Scholar
Laksameethanasan D.: 3D modelling and imaging based on transmission diffraction tomography and algebraic reconstruction techniques as applied in NDT. Master Thesis, University of Kassel, Germany, 2004
Google Scholar
Marklein R., Mayer K., Hannemann R., Krylow T., Balasubramanian K., Langenberg K.J., Schmitz V.: Linear and nonlinear inversion algorithms applied in non destructive evaluation. Inverse problems, 18, 6, 2002, 1733-1759, DOI: 10.1088/0266-5611/18/6/319
Google Scholar
Meju M.A.: Geophysical data analysis: Understanding inverse problem theory and practice. Society of Exploration Geophysicists (SEG) Books, Tulsa, Oklahoma, 1995, https://books.google.pl/books?id=oLlVczj0FcYC&printsec=frontcover&hl=pl&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (available: 08.05.2025)
Google Scholar
Scales J., Smith M., Treitel S.: Introductory geophysical inverse theory. Samizdat Press, Golden, Colorado, USA, 2001, https:// sites.mines.edu/samizdat/wp-content/uploads/sites/341/2020/07/Scales_smith_treitel.pdf (available: 08.05.2025)
Google Scholar
Valle S., Zanzi L., Rocca F.: Radar tomography for NDT: comparison of techniques. Journal of Applied Geophysics, 41, 2-3, 1999, 259-269, DOI: 10.1016/S0926-9851(98)00046-9
Google Scholar
Cruz P.J.S., Topczewski L., Fernandes F.M., Trela C., Lourenco P.B.: Application of radar techniques to the verification of design plans and the detection of defects in concrete bridges. Structure and Infrastructure Engineering, 6, 4, 2010, 395-407. DOI: 10.1080/15732470701778506
Google Scholar