Roads and Bridges - Drogi i Mosty
22, 4, 2023, 331-345

Ocena zastosowania bezzałogowych statków powietrznych do inwentaryzacji stanu nawierzchni drogowej

Anna Małek Poczta
https://orcid.org/0000-0002-2960-0902
Politechnika Poznańska. Wydział Inżynierii Lądowej i Transportu. Instytut Inżynierii Lądowej. Zakład Geotechniki, Geologii Inżynierskiej i Geodezji, ul. Piotrowo 5, 61-139 Poznań
Published: 2023-12-21

Streszczenie

W artykule przedstawiono ocenę techniki wykonywania diagnostyki cech powierzchniowych nawierzchni drogowej przy wykorzystaniu bezzałogowego statku powietrznego. Opisano możliwość wykorzystania technologii bezzałogowych statków powietrznych w diagnostyce stanu nawierzchni, metodykę badań związaną z pomiarami terenowymi, a także wykorzystaniem oprogramowania fotogrametrycznego. W części badawczej porównano wyniki pomiarów wybranych uszkodzeń nawierzchni pozyskane z ortofotomapy (stworzonej na podstawie zdjęć z nalotów bezzałogowym statkiem powietrznym na czterech różnych wysokościach) z danymi pozyskanymi w terenie przy zastosowaniu taśmy mierniczej i tachimetru. Na podstawie wyników badań stwierdzono, że dokładność pomiarów wybranych uszkodzeń nawierzchni (wyboje, łaty, spękania) przy zastosowanej metodyce pomiarów jest zbliżona do wykonywanej technologią wizualną (różnica nie przekracza 1 cm). Przy wykorzystaniu bezzałogowego statku powietrznego z kamerą o matrycy 1/2 cala i ogniskowej 24 mm oraz wysokości lotu 5 m istnieje możliwość wykrycia na obrazach spękań o wielkości od 1 mm, a w przypadku nalotu na 30 m – od 4 mm. Przedstawione w pracy analizy wykazały, że bezzałogowe statki powietrzne mogą być z powodzeniem wykorzystywane w diagnostyce cech powierzchniowych nawierzchni drogowych jako niezależny system wczesnego wykrywania uszkodzeń lub jako rozszerzenie tradycyjnych metod pomiarowych.


SÅ‚owa kluczowe


BSP, diagnostyka nawierzchni, fotogrametria, modelowanie 3D, ocena uszkodzeń nawierzchni.

Pełny tekst:

PDF

Bibliografia


Cebon D.: Vehicle-generated road damage: a review. Vehicle system dynamics, 18, 1-3, 1989, 107-150, DOI: 10.1080/00423118908968916

Hassan Y., Abd El Halim A.O., Razaqpur A.G., Bekheet W., Farha M.H.: Effects of runway deicers on pavement materials and mixes: comparison with road salt. Journal of Transportation Engineering, 128, 4, 2002, 385-391, DOI: 10.1061/(ASCE)0733-947X(2002)128:4(385)

Chlipalski K.: Błędy popełniane podczas budowy i eksploatacji dróg. Drogownictwo, 10, 2007, 120-124

Leonovich I., Melnikova I.: Influence of temperature on the formation of damages in asphalt concrete pavements under climatic conditions of the Republic of Belarus. The Baltic Journal of Road and Bridge Engineering, 7, 1, 2012, 42-47, DOI: 10.3846/bjrbe.2012.06

Talvik O., Aavik A.: Use of FWD deflection basin parameters (SCI, BDI, BCI) for pavement condition assessment. The Baltic Journal of Road and Bridge Engineering, 4, 4, 2009, 196-202, DOI: 10.3846/1822-427X.2009.4.196-202

Loizos A., Al-Qadi I., Scarpas T.: Bearing Capacity of Roads, Railways and Airfields, CRC Press, Londyn, 2017

Pożarycki A., Górnaś P., Wanatowski D.: The influence of frequency normalisation of FWD pavement measurements on backcalculated values of stiffness moduli. Road Materials and Pavement Design, 20, 1, 2019, 1-19, DOI: 10.1080/14680629.2017.1374991

Yu S., Sukumar S.R., Koschan A.F., Page D.L., Abidi M.A.: 3D reconstruction of road surfaces using an integrated multi-sensory approach. Optics and Lasers in Engineering, 45, 7, 2007, 808-818, DOI: 10.1016/j.optlaseng.2006.12.007

Soilán M., Sánchez-Rodríguez A., del Río-Barral P., Perez-Collazo C., Arias P., Riveiro B.: Review of laser scanning technologies and their applications for road and railway infrastructure monitoring. Infrastructures, 4, 4, 2019, ID articles: 58, DOI: 10.3390/infrastructures4040058

Zhou Y., Guo X., Hou F., Wu J.: Review of Intelligent Road Defects Detection Technology. Sustainability, 14, 10, 2022, ID article: 6306, DOI: 10.3390/su14106306

Maeda H., Sekimoto S., Seto T., Kashiyama T., Omata H.: Road damage detection and classification using deep neural networks with smartphone images. Computer-Aided Civil and Infrastructure Engineering, 33, 12, 2018, 1127-1141, DOI: 10.1111/mice.12387

Ranyal E., Sadhu A., Jain K.: Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22, 8, 2022, 3044, DOI: 10.3390/s22083044

Heller S., Mechowski T., Harasim P.: Wykorzystanie badań diagnostycznych stanu nawierzchni do rozpoznania miejsc niebezpiecznych dla użytkowników drogi. Roads and Bridges - Drogi i Mosty, 9, 1, 2010, 57-75

Inzerillo L., Di Mino G., Roberts R.: Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress. Automation in Construction, 96, 2018, 457-469, DOI: 10.1016/j.autcon.2018.10.010

Kubišta J., Surový P.: Spatial resolution of unmanned aerial vehicles acquired imagery as a result of different processing conditions. Central European Forestry Journal, 67, 3, 2021, 148-154, DOI: 10.2478/forj-2021-0011

Höhle J.: Oblique aerial images and their use in cultural heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W2, 2013, 349-354, DOI: 10.5194/isprsarchives-XL-5-W2-349-2013

Cai C., Gao Y., Pan L., Jian-Jun Z.: Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56, 1, 2015, 133-143, DOI: 10.1016/j.asr.2015.04.001

Tang R., Fritsch D., Cramer M.: New rigorous and flexible Fourier self-calibration models for airborne camera calibration. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 2012, 76-85, DOI: 10.1016/j.isprsjprs.2012.05.004

Ferrer-González E., Agüera-Vega F., Carvajal-Ramírez F., Martínez-Carricondo P.: UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sensing, 12, 15, 2020, 2447, DOI: 10.3390/rs12152447

Roberts R., Inzerillo L., Mino G.: Using UAV based 3D modelling to provide smart monitoring of road pavement conditions. Information, 11, 12, 2020, ID article: 568, DOI: 10.3390/info11120568

Zeybek M., Bicici S.: Road distress measurements using UAV. Turkish Journal of Remote Sensing and GIS, 1, 1, 2020, 13-23

Liu Y., Zheng X., Ai G., Zhang Y., Zuo Y.: Generating a high-precision true digital orthophoto map based on UAV images. ISPRS International Journal of Geo-Information, 7, 9, 2018, 333, DOI: 10.3390/ijgi7090333

Mackiewicz P., Mączka E.: Wykorzystanie drona w identyfikacji uszkodzeń nawierzchni. Przegląd komunikacyjny, 2-3, 2022, 32-39

Cardenal J., Fernández T., Pérez-García J.L., Gómez- -López J.M.: Measurement of road surface deformation using images captured from UAVs. Remote Sensing, 11, 12, 2019, ID article: 1507, DOI: 10.3390/rs11121507

Barrile V., Bernardo E., Fotia A., Bilotta G.: Road safety: road degradation survey through images by UAV. WSEAS Transactions on Environment and Development, 16, 2020, 649-659, DOI: 10.37394/232015.2020.16.67

Coenen T.B.J., Golroo A., Lo Presti D.: A review on automated pavement distress detection methods. Cogent Engineering, 4, 1, 2017, ID article: 1374822, DOI: 10.1080/23311916.2017.1374822

Karaca Y., Cicek M., Tatli O., Sahin A., Pasli S., Beser M.F., Turedi S.: The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. American Journal of Emergency Medicine, 36, 4, 2018, 583-588, DOI: 10.1016/j.ajem.2017.09.025

Siebert S., Teizer J.: Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 2014, 1-14, DOI: 10.1016/j.autcon.2014.01.004

Rozporządzenie Wykonawcze Komisji Unii Europejskiej 2019/947 z dnia 24 maja 2019 r. w sprawie przepisów i procedur dotyczących eksploatacji bezzałogowych statków powietrznych. Dz. Urz. UE L 152 z 11.06.2019

Katalog typowych uszkodzeń nawierzchni bitumicznych dla potrzeb ciągłego obmiaru uszkodzeń metodą oceny wizualnej w systemie oceny stanu nawierzchni SOSN. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2002

Zhang A., Wang K.C.P., Fei Y., Liu Y., Chen C., Yang G., Li J.Q., Yang E., Qiu S.: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network. Computer-Aided Civil and Infrastructure Engineering, 34, 3, 2019, 213-229, DOI: 10.1111/mice.12409


1. Bez nazwy

  Bez nazwy
Pobierz (48MB)

2. Bez nazwy

  Bez nazwy
Widok (87KB)

3. Bez nazwy

  Bez nazwy
Pobierz (437KB)

Ocena zastosowania bezzałogowych statków powietrznych do inwentaryzacji stanu nawierzchni drogowej

  
Małek, Anna. Ocena zastosowania bezzałogowych statków powietrznych do inwentaryzacji stanu nawierzchni drogowej. Roads and Bridges - Drogi i Mosty, [S.l.], v. 22, n. 4, p. 331-345, gru. 2023. ISSN 2449-769X. Available at: <>. Date accessed: 10 maj. 2024 doi:http://dx.doi.org/10.7409/rabdim.023.017.