Lin-Hai H., Hui L., Guo-Huang Y., Fei-Yu L.: Further study on the flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research, 62, 6, 2006, 554-565, DOI: 10.1016/j.jcsr.2005.09.002
DOI: https://doi.org/10.1016/j.jcsr.2005.09.002
Google Scholar
Farhan K.A., Shallal M.A.: Experimental behaviour of concrete-filled steel tube composite beams. Archives of Civil Engineering, 66, 2, 235-252, DOI: 10.24425/ace.2020.131807
DOI: https://doi.org/10.24425/ace.2020.131807
Google Scholar
Oehlers D.J., Johnson R.P.: The strength of stud shear connectors in composite beams. The Structural Engineer, 65, 14, 1987, 44-48
Google Scholar
Ellobody E., Lam D.: Modeling of headed stud in steel-precast composite beams. Steel and Composite Structures, 2, 5, 2002, 355-378, DOI: 10.12989/scs.2002.2.5.355
DOI: https://doi.org/10.12989/scs.2002.2.5.355
Google Scholar
Ahn J., Kim S., Jeong Y.J.: Fatigue experiment of stud welded on steel plate for a new bridge deck system. Steel and Composite Structures, 7, 5 , 2007, 391-404, DOI: 10.12989/scs.2007.7.5.391
DOI: https://doi.org/10.12989/scs.2007.7.5.391
Google Scholar
Wiater A., Siwowski T.: Research on fatigue life of lightweight concrete bridge decks reinforced with GFRP composite rebars. Roads and Bridges – Drogi i Mosty, 23, 2, 2024, 155-178, DOI: 10.7409/rabdim.024.008
DOI: https://doi.org/10.7409/rabdim.024.008
Google Scholar
Al-deen S., Ranzi G., Vrcelj Z.: Shrinkage effects on the flexural stiffness of composite beams with solid concrete slabs: An experimental study. Engineering Structures, 33, 4, 2011, 1302-1315, DOI: 10.1016/j.engstruct.2011.01.007
DOI: https://doi.org/10.1016/j.engstruct.2011.01.007
Google Scholar
Baran E., Topkaya C.: Behavior of steel-concrete partially composite beams with channel type shear connectors. Journal of Constructional Steel Research, 97, 2014, 69-78, DOI: 10.1016/j.jcsr.2014.01.017
DOI: https://doi.org/10.1016/j.jcsr.2014.01.017
Google Scholar
Leonhardt F., Andra W., Andra HP., Harre W.: Neues, vorteilhaftes Verbundmittel für Stahlverbund-Tragwerke mit hoher Dauerfestigkeit. Beton- und Stahlbetonbau, 82, 12, 1987, 325-331, DOI: 10.1002/best.198700500
DOI: https://doi.org/10.1002/best.198700500
Google Scholar
Oguejiofor E.C., Hosain M.U.: Behavior of perfobond rib shear connectors in composite beams: full-sized test. Canadian Journal of Civil Engineering, 19, 2, 1992, 224-235, DOI: 10.1139/l92-028
DOI: https://doi.org/10.1139/l92-028
Google Scholar
Oguejiofor E.C., Hosain M.U.: A parametric study of perfobond rib shear connectors. Canadian Journal of Civil Engineering, 21, 4, 1994, 614-625, DOI: 10.1139/l94-063
DOI: https://doi.org/10.1139/l94-063
Google Scholar
Oguejiofor E.C., Hosain M.U.: Numerical analysis of push-out specimens with perfobond rib connectors. Computers & Structures, 62, 4, 1997, 617-624, DOI: 10.1016/S0045-7949(96)00270-2
DOI: https://doi.org/10.1016/S0045-7949(96)00270-2
Google Scholar
Machacek J., Studnicka J.: Perforated shear connectors. Steel and Composite Structures, 2, 1, 2002, 51-66, DOI: 10.12989/scs.2002.2.1.051
DOI: https://doi.org/10.12989/scs.2002.2.1.051
Google Scholar
Valente I., Cruz P.J.S.: Experimental analysis of the Perfobond shear connection between steel and lightweight concrete. Journal of Constructional Steel Research, 60, 3-5, 2004, 465-479, DOI: 10.1016/S0143-974X(03)00124-X
DOI: https://doi.org/10.1016/S0143-974X(03)00124-X
Google Scholar
Ahn J.H., Kim S.H., Jeong Y.J.: Shear behaviour of perfobond rib shear connector under static and cyclic loadings. Magazine of Concrete Research, 60, 5, 2008, 347-357, DOI: 10.1680/macr.2007.00046
DOI: https://doi.org/10.1680/macr.2007.00046
Google Scholar
Ahn J.H., Lee C.G., Won J.H., Kim S.H.: Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement. Journal of Constructional Steel Research, 66, 10, 2010, 1295-1307, DOI: 10.1016/j.jcsr.2010.04.008
DOI: https://doi.org/10.1016/j.jcsr.2010.04.008
Google Scholar
Zheng S., Liu Y., Liu Y., Zhao C.: Experimental and numerical study on shear resistance of notched perfobond shear connector. Materials, 12, 3, 2019, Article ID: 341, DOI: 10.3390/ma12030341
DOI: https://doi.org/10.3390/ma12030341
Google Scholar
Li S., Su L., Sun Z.: Research on the load-slip properties of corrugated rib connectors’ push-out test. KSCE Journal of Civil Engineering, 22, 4, 2018, 1258-1264, DOI: 10.1007/s12205-017-0951-9
DOI: https://doi.org/10.1007/s12205-017-0951-9
Google Scholar
Zheng S., Zhao C., Liu Y.: Parametric push-out analysis on perfobond rib with headed stud mixed shear connector. Advances in Civil Engineering, 2019, 2019, Article ID: 5952319, DOI: 10.1155/2019/5952319
DOI: https://doi.org/10.1155/2019/5952319
Google Scholar
Zheng S., Liu Y., Yoda T., Lin W.: Parametric study on shear capacity of circular-hole and long-hole perfobond shear connector. Journal of Constructional Steel Research, 117, 2016, 64-80, DOI: 10.1016/j.jcsr.2015.09.012
DOI: https://doi.org/10.1016/j.jcsr.2015.09.012
Google Scholar
Ibrahim A.M., Mubarak H.M., Said A.I.: Experimental study of push-out test of circular steel tube with various types of shear connectors. Proceedings of 1st International Scientific Conference of Engineering Sciences – 3rd Scientific Conference of Engineering Science (ISCES), Diyala, Iraq, 2018, 265-270
DOI: https://doi.org/10.1109/ISCES.2018.8340565
Google Scholar
EN 1994-1-1 Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings
Google Scholar
IQS 5/1984 Iraqi Specification 5: for Portland cement. Iraqi Organization of Standards, 1984
Google Scholar
EFNARC The European Guidelines for Self-Compacting Concrete: Specification, Production and Use. The Self-Compacting Concrete European Project Group, 2005
Google Scholar
IQS 45/1984 Iraqi Specification 45: for aggregates of natural resources used for concrete and construction. Iraqi Organization of Standards, 1984
Google Scholar
ASTM A615/A615M-09b Standard specification for deformed and plain carbon-steel bars for concrete reinforcement, 2009
Google Scholar
ASTM A36/36M-08 Standard specification for carbon structural steel, 2008
Google Scholar
ACI PRC-211.1-91 Standard practice for selecting proportions for normal heavyweight and mass concrete. American Concrete Institute, ACI Committee 211, Reapproved 2002
Google Scholar
ACI 237R-07 Self-Consolidating Concrete. American Concrete Institute, ACI Committee 237, Reapproved 2019
Google Scholar