Roads and Bridges - Drogi i Mosty
22, 4, 2023, 447-462

Effectiveness of a specific Reclaimed Asphalt Pavement (RAP) rejuvenating agent

Robert Jurczak Mail
https://orcid.org/0000-0003-3149-7497
West Pomeranian University of Technology, 17 Piastów AV., 70-310 Szczecin
Paweł Mieczkowski Mail
https://orcid.org/0000-0003-2128-5327
West Pomeranian University of Technology, 17 Piastów AV., 70-310 Szczecin
Oliwia Merska Mail
https://orcid.org/0000-0001-7085-7307
West Pomeranian University of Technology, 17 Piastów AV., 70-310 Szczecin
Maria Ratajczak Mail
https://orcid.org/0000-0003-0575-4963
Poznań University of Technology, 5 M. Skłodowska-Curie Square, 60-965 Poznan
Published: 2023-12-30

Abstract

Contemporary construction materials are expected to be recyclable in a closed-loop system, meaning they should allow reuse, after they have lost their original properties while being part of the original building product. This group of materials should undoubtedly include bituminous mixtures, which may be reclaimed during road renewal or alteration projects, and subsequently reused as Reclaimed Asphalt Pavement (RAP). Noteworthy, RAP performance depends on the properties of the binder it contains, whose visco-elastic behaviour has been affected by the ageing processes. Fortunately enough, these properties of bitumen may be effectively recovered by means of special chemical agents called rejuvenators. This paper presents the results of two-stage research project on this subject. The first stage included testing of the bituminous binder under analysis. It was a 50/70 pen-grade bitumen tested before and after short-term ageing (RTFOT + PAV) and aged binder tested after rejuvenation treatment. Spectroscopic and fractional composition analyses were carried out in addition to determining the basic properties i.e. penetration, softening point, dynamic shear modulus and phase angle. In the second stage of this research project a different material was tested: AC 16 W 50/70 asphalt concrete sourced from a hot-mix asphalt plant. The specimens were made from the fresh mix (control) and the same mix after short- and long-term ageing and after subsequent rejuvenation treatment. The determinations included density, bulk density, water sensitivity, stiffness modulus, resistance to fatigue and low temperature performance determined with the Thermal Stress Restrained Specimen Test (TSRST).The tests of RAP treated with oleyl alcohol ethoxylate phosphate ester carried out as part of this research showed improvement of the performance properties of aged bituminous binders, and thus confirmed the suitability of this agent in road paving applications

Keywords


reclaimed asphalt pavement (RAP), bitumen, rejuvenator, stiffness modulus, fatigue, Thermal Stress Restrained Specimen Test (TSRST)

Full Text:

PDF

References


Bodin D., Soenen H., Roche C.: Temperature effects in binder fatigue and healing tests. Conference: E&E Conference in Vienna 2004

Budziński B., Mieczkowski P., Słowik M., Mielczarek M., Bilski M., Fornalczyk S.: Assessment of the low-temperature performance of asphalt mixtures for bridge pavement. Road Materials Pavement Design, 24, Sup. 1: EATA 2023 Gdansk, 2023, DOI: 10.1080/14680629.2023.2181002

Kandhal P.S., Chakraborty S.: Effect of Asphalt Film Thickness on Short – and Long-Term Aging of Asphalt Paving Mixtures. Transportation Research Record: Journal of the Transportation Research Board, 1535, 1, 1996, DOI: 10.1177/0361198196153500111

Kowalski K., Król J., Bańkowski W., Radziszewski P., Sarnowski M.: Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent. Applied Sciences, 7, 3, 216, DOI: 10.3390/app7030216

Mannan U., Islam M., Tarefder R.: Fatigue Behavior of Asphalt Containing Reclaimed Asphalt Pavements. TRB Annual Meeting 2015

Miró R., Martínez A.H., Pérez-Jiménez F.E., Botella R., Álvarez A.: Effect of filler nature and content on the bituminous mastic behaviour under cyclic loads. Construction and Building Materials, 132, 2017, 33–42, DOI: 10.1016/j.conbuildmat.2016.11.114

Piłat J., Radziszewski P.: Nawierzchnie asfaltowe. Warszawa, WKŁ, 2007

Read J., Whiteoak D., Hunter R.N.: The Shell Bitumen handbook – 5th edition. London, Thomas Telford, 2003

Stefańczyk B., Mieczkowski P.: Mieszanki mineralno-asfaltowe: wykonawstwo i badania. Warszawa, WKŁ, 2009

Petersen J.C.: A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Serial: Transportation Research Circular No E-C140. Publication Date: 2009–10, https://trid.trb.org/view/902386

Tauste R., Moreno-Navarro F., Sol-Sánchez M., Rubio-Gámez M.C.: Understanding the bitumen ageing phenomenon: A review. Construction and Building Materials, 192, 2018, 593–609, DOI: 10.1016/j.conbuildmat.2018.10.169

Solanki P., Zaman M., Adje D., Hossain Z.: Effect of Recycled Asphalt Pavement on Thermal Cracking Resistance of Hot-Mix Asphalt. International Journal of Geomechanics, 15, 5,2014, DOI: 10.1061/(ASCE)GM.1943-5622.0000398

Abouelsaad A., White G.: The Combined Effect of Ultraviolet Irradiation and Temperature on Hot Mix Asphalt Mixture Aging. Sustainability, 14, 10, 5942, 2022, DOI: 10.3390/su14105942

Bocci M., Cerni G.: The ultraviolet radiation in short-term and long-term aging of bitumen. Proceedings of Eurasphalt & Eurobitume Congress, Barcelona, Spain, 20–22 September 2000. Book 1 – Session 1, 49–58, https://trid.trb.org/view/673920

Feng Z.-G, Yu J.-Y., Zhang H.-L., Kuang D.-L., Xue L.-H.: Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen. Materials and Structures, 46, 7, 2013, 1123–1132, DOI: 10.1617/s11527-012-9958-3

Hu J. i in.: The Effect of Ultraviolet Radiation on Bitumen Aging Depth. Materials, 11, 5, 2018, 747–762, DOI: 10.3390/ma11050747

Polo-Mendoza R. i in.: Ultraviolet ageing of bituminous materials: A comprehensive literature review from 2011 to 2022. Construction and Building Materials, 350, 2022, 1–32, DOI: 10.1016/j.conbuildmat.2022.128889

Liu M., Chaffin J.M., Davison R.R., Glover C.J., Bullin J.A.: Changes in Corbett Fraction Composition During Oxidation of Asphalt Fractions. Transportation Research Record: Journal of the Transportation Research Board, 1638, 1, 1998, 40–46, DOI: 10.3141/1638-05

Berkowitz M., Filipovich M., Baldi A., Hesp S.A.M., Aguiar-Moya J.P., Lorı́a-Salazar L.G.: Oxidative and Thermoreversible Aging Effects on Performance-Based Rheological Properties of Six Latin American Asphalt Binders. Energy Fuels, 33, 4, 2019, 2604-2613, DOI: 10.1021/acs.energyfuels.8b03265

Bocci E., Prosperi E., Mair V., Bocci M.: Ageing and Cooling of Hot-Mix-Asphalt during Hauling and Paving-A Laboratory and Site Study. Sustainability, 12, 8612, 2020, DOI: 10.3390/su12208612

Read J., Whiteoak D.: The Shell Bitumen Handbook – 5th Edition. London, United Kingdom, Thomas Telford Limited, 2003, 5, https://trid.trb.org/view/741018

Yut I., Zofka A.: Correlation between rheology and chemical composition of aged polymer-modified asphalts. Construction and Building Materials, 62, 2014, 109–117, DOI: 10.1016/j.conbuildmat.2014.03.043

Kamali Z., Karimi M.M., Ahmadi Dehaghi E., Jahanbakhsh H.: Using electromagnetic radiation for producing reclaimed asphalt pavement (RAP) Mixtures: Mechanical, induced heating, and sustainability assessments. Construction and Building Materials, 321, 2022, 126315, DOI: 10.1016/j.conbuildmat.2022.126315

van de Ven M.F.C., Molenaar A.A.A., Mengiste G.. Development of a Lab Production Method with Recycled Asphalt Pavement in a Double Barrel Drum Mixer. in: The 11th International Conference on Asphalt Pavements, Nagoya, Japan, 2010, 1–9

Sorociak W., Grzesik B., Bzówka J., Mieczkowski P.: Asphalt Concrete Produced from Rejuvenated Reclaimed Asphalt Pavement (RAP). Archives Civil Engineering, 2, 2020, DOI: 10.24425/ACE.2020.131812

Zaumanis M., Mallick R.B.: Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art. International Journal of Pavement Engineering, 16, 1, 2015, 39–55, DOI: 10.1080/10298436.2014.893331

Sharma B.K. i in.: Modeling the performance properties of RAS and RAP blended asphalt mixes using chemical compositional information. Tech Report FHWA¿ICT¿17¿001, 2017, https://rosap.ntl.bts.gov/view/dot/32024

Haddadi S.S., Coleri E., Sreedhar S.: Strategies to improve performance of reclaimed asphalt pavement-recycled asphalt shingle mixtures. International Journal of Pavement Engineering, 22, 2, 2019, 1–12, DOI: 10.1080/10298436.2019.1593411

Ahmed R.B., Hossain K.: Waste cooking oil as an asphalt rejuvenator: A state-of-the-art review. Construction and Building Materials, 230, 116985, 2020, DOI: 10.1016/j.conbuildmat.2019.116985

Baghaee Moghaddam T., Baaj H.: The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review. Construction and Building Materials, 114, 2016, DOI: 10.1016/j.conbuildmat.2016.04.015

Jiang Y.J., Xue H., Xue H., Chen Z.D.: Preventing cracks of asphalt pavement based on pre-cutting crack and paving geotextile at semi-rigid type base. Journal of Chang’an University (Natural Science Edition), 26, 2, 2006, 6–9

Zaumanis M., Mallick R.B., Poulikakos L., Frank R.: Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Construction and Building Materials, 71, 2014, 538–550, DOI: 10.1016/j.conbuildmat.2014.08.073

Zaumanis M., Mallick R.B., Frank R.: Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications. Construction and Building Materials, 69, 2014, 159–166, DOI: 10.1016/j.conbuildmat.2014.07.035

De Bock L., Piérard N., Vansteenkiste S., Vanelstraete A.: Categorisation and analysis of rejuvenators for asphalt recycling. Report number: Dossier 21, 2020

Oliver J.W.H.: Diffusion of oils in asphalts. in: ARR Report, no. 9. Vermont South, Vic.: Australian Road Research Board, 1975

Karlsson R., Isacsson U.: Investigations on bitumen rejuvenator diffusion and structural stability. Asphalt Paving Technology, 72, 2003, 463–501

Loise V., Caputo P., Porto M., Calandra P., Angelico R., Oliviero C.: A Review on Bitumen Rejuvenation: Mechanisms. Materials, Methods and Perspectives. Applied Sciences, 9, 20, 4316, 2019, DOI: 10.3390/app9204316

Porto M., Caputo P., Loise V., Eskandarsefat S., Teltayev B., Oliviero Rossi C.: Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9, 4, 742, 2019, DOI: 10.3390/app9040742

Fernández-Gómez W.D., Rondón Quintana H., Reyes-Lizcano F.: A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33, 1, 2013, 5–12, DOI: 10.15446/ing.investig.v33n1.37659

Lesueur D.: The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145, 1, 2009, 42–82, DOI: 10.1016/j.cis.2008.08.011

Dony A., Colin J., Bruneau D., Drouadaine I., Navaro J.: Reclaimed asphalt concretes with high recycling rates: Changes in reclaimed binder properties according to rejuvenating agent. Construction and Building Materials, 41, 2013, 175–181, DOI: 10.1016/j.conbuildmat.2012.11.031

Radenberg M., Boetcher S., Sedaghat N.: Effect and efficiency of rejuvenators on aged asphalt binder – German experiences. in: 6th Eurasphalt & Eurobitume Congress, 1–3 June 2016, Prague, Czech Republic, DOI: 10.14311/EE.2016.051

Ji J. i in.: Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders. Journal of Materials in Civil Engineering, 29, 3, 2017, DOI: 10.1061/(ASCE)MT.1943-5533.0001769

Gong M., Yang J., Zhang J., Zhu H., Tong T.: Physical-chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Construction and Building Materials, 105, 2016, 35–45, DOI: 10.1016/j.conbuildmat.2015.12.025

Grzesik B., Bzówka J., Sorociak W., Mieczkowski P.: Asphalt Concrete Produced from Rejuvenated Reclaimed Asphalt Pavement (RAP). Archives of Civil Engineering, 66, 2, 2020, 321–337, DOI: 10.24425/ace.2020.131812

https://www.products.pcc.eu/pl/numer-cas/39464-69-2

PN-EN 1097-6:2022-07 Badania mechanicznych i fizycznych właściwości kruszyw – Część 6: Oznaczanie gęstości ziarn i nasiąkliwości

PN-EN 1097-7:2023-04 Badania mechanicznych i fizycznych właściwości kruszyw – Część 7: Oznaczanie gęstości wypełniacza – Metoda piknometryczna

WT-2 2014 – część I. Mieszanki mineralno-asfaltowe. Wymagania Techniczne. Warszawa, Generalna Dyrekcja Dróg Krajowych i Autostrad, 2014

PN-EN 12697-6:2020-07 Mieszanki mineralno-asfaltowe – Metody badań – Część 6: Oznaczanie gęstości objętościowej próbek mieszanki mineralno-asfaltowej

PN-EN 12697-5:2019-01 Mieszanki mineralno-asfaltowe – Metody badań – Część 5: Oznaczanie gęstości

PN-EN 12697-8:2019-01 Mieszanki mineralno-asfaltowe – Metody badań – Część 8: Oznaczanie zawartości wolnej przestrzeni próbek mineralno-asfaltowych

PN-EN 12697-12:2018-08 Mieszanki mineralno-asfaltowe – Metody badań – Część 12: Określanie wrażliwości na wodę próbek mineralno-asfaltowych

PN-EN 12697-22:2020-07 Mieszanki mineralno-asfaltowe – Metody badań – Część 22: Koleinowanie

Howard I.L., Doyle J.D.: Durability Indexes via Cantabro Testing for Unaged, Laboratory-Conditioned, and One-Year Outdoor-Aged Asphalt Concrete. Transportation Research Board, 94th Annual Meeting, Washington DC, United States, 11-15.01.2015, https://trid.trb.org/view/1337071

Newcomb D. i in.: Short-Term Laboratory Conditioning of Asphalt Mixtures. NCHRP Report 815, 2015

Islam M., Hossain I., Tarefder R.: A study of asphalt aging using Indirect Tensile Strength test. Construction and Building Materials, 95, 2015, 218–223, DOI: 10.1016/j.conbuildmat.2015.07.159

Bonaquist R.F.: Mix design practices for warm mix asphalt. NCHRP Report no. 691. Washington, D.C., Transportation Research Board, 2011

Moraes R., Yin F., Chen C., Andriescu A., Mensching D.J., Tran N.: Evaluation of long-term oven aging protocols on field cracking performance of asphalt binders containing reclaimed asphaltic materials (RAP/RAS). Road Materials and Pavement Design, 24, sup. 1, 2023, 437–450, DOI: 10.1080/14680629.2023.2181004

PN-EN 1426:2015-08 Asfalty i lepiszcza asfaltowe – Oznaczanie penetracji igłą

PN-EN 1427:2015-08 Asfalty i lepiszcza asfaltowe – Oznaczanie temperatury mięknienia – Metoda Pierścień i Kula

PN-EN 12591:2010 Asfalty i lepiszcza asfaltowe – Wymagania dla asfaltów drogowych

AASHTO T 315 – Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)

Ranny M.: Thin-Layer Chromatography with Flame Ionization Detection. Dordrecht , Boston , Norwell, MA, U.S.A, Springer, 1987

Porot L., Mouillet V., Margaritis A., Haghshenas H.F., Elwardany M., Apostolidis P.: Fourier-transform infrared analysis and interpretation for bituminous binders. Road Materials and Pavement Design, 24, 132, 2022, DOI: 10.1080/14680629.2021.2020681

PN-EN 12697-26 Mieszanki mineralno-asfaltowe – Metody badań – Część 26: Sztywność”

PN-EN 12697-30:2019-01 Mieszanki mineralno-asfaltowe – Metody badań – Część 30: Przygotowanie próbek zagęszczonych przez ubijanie

PN-EN 12697-24 Mieszanki mineralno-asfaltowe – Metody badań mieszanek mineralno-asfaltowych na gorąco – Część 24: Odporność na zmęczenie

Pszczoła M., Szydłowski C., Jaczewski M.: Influence of cooling rate and additives on low-temperature properties of asphalt mixtures in the TSRST. Construction Building Materials, 204, 2019, 399–409, DOI: 10.1016/j.conbuildmat.2019.01.148

Teltayev B., Radovskiy B.: Predicting thermal cracking of asphalt pavements from bitumen and mix properties. Road Materials and Pavement Design, 19, 8, 2018, 1832–1847, DOI: 10.1080/14680629.2017.1350598


Effectiveness of a specific Reclaimed Asphalt Pavement (RAP) rejuvenating agent

  
Jurczak, Robert et al. Effectiveness of a specific Reclaimed Asphalt Pavement (RAP) rejuvenating agent. Roads and Bridges - Drogi i Mosty, [S.l.], v. 22, n. 4, p. 447-462, dec. 2023. ISSN 2449-769X. Available at: <>. Date accessed: 17 Apr. 2024. doi:http://dx.doi.org/10.7409/RABDIM.023.027.