Roads and Bridges - Drogi i Mosty
13, 3, 2014, 203-222

Selected properties of FEM numerical models for inverse analysis of road pavement structures

Przemysław Górnaś Mail
Poznan University of Technology, Faculty of Civil and Environmental Engineering
Andrzej Pożarycki Mail
Poznan University of Technology, Faculty of Civil and Environmental Engineering


Taking into consideration the key parameters of a FEM based pavement model, such as type, shape of mesh of finite elements, boundary conditions and dimensions, the authors compared the obtained values of elastic moduli with the results of calculations based on the classical theory of elastic layers positioned on elastic half-space (LET). The properties FEM model have been described for which the obtained difference between identified values of elastic moduli with respect to LET method is less than 10%. Moreover, in the majority of cases it has been concluded that the module of relative error of the values of elastic moduli identified with both methods depends on the depth of the layer within the model.


backcalculations, Finite Element Method (FEM), LET, pavement, pavement mechanics

Full Text:



Abaqus analysis user’s manual, Version 6.11, Dassault SysteMES, 2011

Al-Khoury R., Scarpas A., Kasbergen C., Blaauwendraad J.: Spectral element technique for efficient parameter identification of layered media. Part I: Forward calculation. International Journal of Solids and Structures, 38, 9, 2001, 1605-1623

Asghar Bhatti M.: Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations. Wiley, New Jersey, 2005

Asghar Bhatti M.: Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB Computations. Wiley, New Jersey, 2006

Burak G., Emine A., Hilmi L.: Advances in backcalculating the mechanical properties of flexible pavements. Advances in Engineering Software, 37, 7, 2006, 421-431

Collop A.C., Scarpas A., Kasbergen C., Bondt A.: Development and Finite Element Implementation of Stress-Dependent Elastoviscoplastic Constitutive Model with Damage for Asphalt. Transportation Research Board of the National Academies, 1832, 12, 2003, 96-104

Dehlen G.L.: The effect of Nonlinear Material Response on the Behavior of Pavements Subjected to Traffic Loads Dehlen. University of Berkeley, 1969

Duncan J.M., Monismith C.L., Wilson E.L.: FEA of Pavements. Highway Research Record, 228, 1968, 18-33

Firlej S.: Mechanika nawierzchni drogowej. Petit s.c., Lublin, 2007

Fuchang G., Lixing H.: Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, 51, 1, 2012, 259-277

Garbowski T.: Stochastic model reduction applied to inverse analysis. Proceedings of the VI International Conference on Adaptive Modeling and Simulation ADMOS 2013, Eds. J.P. Moitinho de Almeida, P. Díez, C. Tiago, N. Parés, CIMNE Barcelona, 2013

Graczyk M., Rafa J.: Wybrane aspekty zachowania się nawierzchni podatnych w modelach materiałów termolepkosprężystych. Roads and Bridges - Drogi i Mosty, 9, 2, 2010, 5-15

Graczyk M., Rafa J., Rafalski L., Zofka A.: New analytical solution of flow and heat refraction problem in multilayer pavement. Roads and Bridges - Drogi i Mosty, 13, 1, 2014, 33-48

Guzina B.B., Osburn R.H.: Effective Tool for Enhancing Elastostatic Pavement Diagnosis. Transportation Research Record, 1806, 2002, 30-37

Hadidi R., Gucunski N.: Probabilistic Inversion: A New Approach to Inversion Problems in Pavement and Geomechanical Engineering. Intelligent and Soft Computing in Infrastructure Systems Engineering, 259, 2009, 21-45

Irwin L.: Backcalculation: Basics and Beyond. Cornell University, Ithaca, 2004

Jemioło S., Szwed A.: Zagadnienia statyki sprężystych półprzestrzeni warstwowych. Seria wydawnicza „Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności”, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2013

Kim M.: Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior. University of Illinois at Urbana- Champaign, Urbana, 2008

Long F., Monismith C.L.: Use of a Nonlinear Viscoelastic Constitutive Model for Permanent Deformation in Asphalt Concrete. Proc. 3rd Int. Symp. on 3D Finite Elements for Pavement Analysis, Design and Research, Amsterdam, 2002

Nagórska M., Nagórski R.: Analiza statyczna konstrukcji nawierzchni drogowej za pomocą MES i programu abaqus. Logistyka, 3, 2011, 1977-1986

Nagórski R., Błażejowski K., Marczuk K.: Comparative analysis of strains and durability of asphalt pavement of perpetual and standard type. Roads and Bridges - Drogi i Mosty, 11, 4, 2012, 311-327

Scarpas A., Al-Khoury R., Gurp C.A.P.M., Erkens S.M.J.G.: Finite Element Simulation of Damage Development in Asphalt Concrete Pavements. Proc. 8th International Conference on Asphalt Pavements, University of Washington, Washington, 1997

Szydło A.: Statyczna identyfikacja parametrów modeli nawierzchni lotniskowych. Prace Naukowe Instytutu Inżynierii Lądowej Politechniki Wrocławskiej, 45, Seria: monografie, 17, 1995

Ullidtz P.: Pavement Analysis. Developments in Civil Engineering, Elsevier, 1987

Van Cauwelaert F.: Pavement Design And Evaluation The Required Mathematics And Its Applications. Federation of the Belgian Cement Industry, Brussels, 2003

Wu Z., Chen X., Yang X.: Finite Element Simulation of Structural Performance on Flexible Pavements with Stabilized Base/Treated Subbase Materials under Accelerated Loading. Transportation Research Center, Louisiana, 2011

Zafar R., Nassar W., Elbella A.: Interaction between pavement instrumentation and hot mix asphalt in flexible pavements. Bradley University, Bradley, 2003

Zienkiewicz O.C., Taylor R.L.: The Finite Element Method. Butterworth-Heinemann, Oxford, 2000

Selected properties of FEM numerical models for inverse analysis of road pavement structures

Górnaś, Przemysław; Pożarycki, Andrzej. Selected properties of FEM numerical models for inverse analysis of road pavement structures. Roads and Bridges - Drogi i Mosty, [S.l.], v. 13, n. 3, p. 203-222 , apr. 2014. ISSN 2449-769X. Available at: <>. Date accessed: 17 Apr. 2024. doi: