Roads and Bridges - Drogi i Mosty
8, 4, 2009, 71-87

Active damping of vibrations of one dimensional continuum under a moving load

Dominik Pisarski Mail
Instytut Podstawowych Problemów Techniki PAN w Warszawie
Czesław Bajer Mail
Instytut Podstawowych Problemów Techniki PAN w Warszawie
Published: 2009-12-30

Abstract

In this paper, a semi-active control of vibrations of ID elastic continuum under a traveling load is presented. Bridge spans induced by vehicles traveling over it with high speed can be reinforced by supplementary supports with magneto or electroreological dampers controlled externally. Structures with such an external control of parameters can resist to the load in a more efficient way. Controlled system widely outperforms passive cases when decreasing amplitudes of transverse vibrations. The goal of the paper is to design a control method - effective and simple in practical realization. In the model the number of dampers and their fixed points are taken as arbitrary. Control functions are assumed to be piecewise constant. Response of the system is solved in modal space. Full analytical solution is based on the power series method and is given in an arbitrary time interval. The performance of assumed strategy is verified for different cost integrands. Several examples are solved by using the proposed method.

Full Text:

PDF

References


Ryba L.: Vibrations of solids and structures under moving loads. Thomas Telford House, 1999

Yang Y.B., Wu Y.S., Yau J.D.: Vehicle-bridge interaction dynamics: with applications to high-speed railways. World Scientific Publishing Company, 2004

Olsson M.: On the fundamental moving load problem. Journal of Sound and Vibration, 154, 2, 1991, 299 - 307

Szcześniak W., Ataman M., Zbiciak A.: Drgania belki sprężystej wywołane ruchomym, liniowym oscylatorem jednomasowym. Drogi i Mosty nr 2/2002, 53 - 83

Pesterev A.V., Bergman L.A.: Response of elastic continuum carrying moving linear oscillator. ASCE Journal of Engineering Mechanics, 123, 8, 1997, 878 - 884

Metrikine A.V., Verichev S.N.: Instability of vibration of a moving oscillator on a flexibly supported Timoshenko beam. Archive of Applied Mechanics, 71, 9, 2001, 613 - 624

Biondi B., Muscolino G.: New improved series expansion for solving the moving oscillator problem. Journal of Sound and Vibration, 281, 1-2, 2005, 99 - 117

Bolotin W.W.: Wpływ ruchomego obciążenia na mosty (w j. ros.). Reports of Moscow University of Railway Transport MIIT, 74, 1950, 269 - 296

Sadiku S., Leipholz H.H.E.: On the dynamics of elastic systems with moving concentrated masses. Ingenieur Archiv, 57, 3, 1987, 223 - 242

Ichikawa M., Miyakawa Y., Matsuda A.: Vibration analysis of the continuous beam subjected to a moving mass. Journal of Sound and Vibration, 230, 3, 2000, 493 - 506

Dyniewicz B., Bajer C.I.: Paradox of the particle’s trajectory moving on a string. Archive of Applied Mechanics, 79, 3, 2009, 213 - 223

Sapinski R., Piłat A., Rosół M.: Modelling of a quarter car semi-active suspension with a MR damper. Machine Dynamics Problems, 27, 2, 2003, 107 - 116

Giraldo D., Dyke Sh.J.: Control of an elastic continuum when traversed by a moving oscillator. Journal of Structural Control and Health Monitoring, 14, 2007, 197 - 217

Ruangrassamee A., Kawashima K.: Control of nonlinear bridge response with pounding effect by variable dampers. Engineering Structures, 25, 5, 2003, 593 - 606

Yoshida K., Fujio T.: Semi-active base isolation for a building structure. International Journal of Computer Applications in Technology, 13, 1/2, 2000, 52 - 58

Ossowski A.: Semi-active control of free beam vibration. Theoretical Foundations of Civil Engineering, 11, 2003, 557 - 566

Frischgesell T., Krzyżyński T., Bogacz R., Popp K.: On the dynamics and control of a guideaway under a moving mass. Heavy vehicle systems. A series of the International Journal of Vehicle Design, 6, 1/4, 1999, 176 - 189

Frischgesell T., Popp K., Reckmann H., Schutte O.: Regelung eines elastischen Fahrwegs inter Verwendung eines variablen Beobachters. Technische Mechanik, 18, 1, 1998, 44 - 55

Tylikowski A.: Stabilization of parametric vibrations of a nonlinear continuous system. Meccanica, 38, 6, 2003, 659 - 668

Tylikowski A.: Active damping of geometrically nonlinear transverse beam vibrations. Mechanics and Mechanical Engineering, 5, 2, 2001, 127 - 136

Tylikowski A., Watanabe K., Ziegler F.: Active damping of parametric vibrations of mechanical distributed systems. IUTAM Symposium on Dynamics of Advanced Materials and Smart Structures, Kluver Academic Publishers, Dordrecht 2003, 409 - 418

Mohler R.R.: Nonlinear Systems. Vol. 2. Applications to bilinear control. Prentice Hall, 1991

Mohler R.R.: Bilinear control processes. Academic Press, New York 1973

Bogacz R., Bajer C.I.: Active control of beams under moving load. Journal of Theoretical and Applied Mechanics, 38, 3, 2000, 523 - 530


Active damping of vibrations of one dimensional continuum under a moving load

  
Pisarski, Dominik; Bajer, Czesław. Active damping of vibrations of one dimensional continuum under a moving load. Roads and Bridges - Drogi i Mosty, [S.l.], v. 8, n. 4, p. 71-87, dec. 2009. ISSN 2449-769X. Available at: <>. Date accessed: 20 Sep. 2019.