Roads and Bridges - Drogi i Mosty
10, 3, 2011, 63-87

The influence of rail-vehicles’ properties on dynamic response of a beam bridge

Monika Podwórna Mail
Wrocław University of Technology, Faculty of Civil Engineering
Marian Klasztorny Mail
Military University of Technology in Warsaw, Faculty of Mechanical Engineering


The study is focused on assessment of the influence of the basic properties of rail-vehicles on the dynamic response of the beam bridge in a wide range of a service velocity of the cyclic moving load. The analysis relates to the following properties: unsprung masses (wheel sets), sprung masses (bogie frames, bodies). The numerical research has been performed with the use of simplified models of a bridge and rail-vehicles. The bridge is modelled as a simply- supported Euler-Bernoulli beam. Four models of the cyclic moving load are taken into account, i.e. the concentrated forces moving system (model P), the concentrated unsprung masses moving system (model M), the single-mass viscoelastic oscillators moving system (model Mo), the double-mass viscoelastic oscillators moving system (model MMo). The sets of moving elements are finite. The matrix equations of motion governing vibrations of the system has been formulated making use of Lagrange-Ritz and Klasztorny methods. In case of the M and MMo models the compliance of wheel sets and one-way constraints between the moving elements and the track are taken into consideration. The numerical investigations have pointed out that the advanced rail-vehicle models should take into account unsprung masses, viscoelastic suspensions and sprung masses.


beam bridge, high-speed train, moving load modelling, railway bridge

Full Text:



Nelson H.D., Conover R.A.: Dynamic stability of a beam carrying moving masses. ASME J. Applied Mechanics, 38, 1971, 1003 - 1006

Benedetti G.A.: Dynamic stability of a beam loaded by a sequence of moving mass particles. ASME J. Applied Mechanics, 41, 1974, 1069 - 1071

Chu K.H. i in.: Railway - bridge impact; simplified train and bridge model. ASCE J. Structural Division, 105, 9, 1979, 1823 - 1844

Langer J., Klasztorny M.: Drgania złożonego układu belkowego pod ruchomym inercyjnym obciążeniem cyklicznym. Archiwum Inżynierii Lądowej, 27, 2, 1981, 261 - 279

Borowicz T.: Metoda elementów skończonych w analizie drgań konstrukcji poddanych działaniu obciążeń ruchomych. ZN PŚk, Budownictwo Nr 15, Kielce, 1984

Klasztorny M.: Dynamiczna stabilność konstrukcji mostowych poddanych dzia- łaniu inercyjnych obciążeń ruchomych. Rozprawy Inż., 34, 3, 1986, 215 - 231

Klasztorny M., Langer J.: Dynamic response of single-span beam bridges to series of moving loads. Earthquake Engineering & Structural Dynamics, 19, 8, 1990, 1107 - 1124

Yang Y.B. et al.: Vibrations of simple beams due to trains moving at high speeds. Engineering Structures, 19, 11, 1997, 936 - 944

Cheng Y.S. et al.: Vibration of railway bridges under a moving train by using bridgetrack-vehicle element. Engineering Structures, 23, 2001, 1597 - 1606

Fryba L.: A rough assessment of railway bridges for high speed trains. Engineering Structures, 23, 2001, 548 - 556

Yau J.D. et al.: Impact response of bridges with elastic bearings to moving loads. J. Sound & Vibrations, 248, 1, 2001, 9 - 30

Matsuura A.: Dynamic interaction between vehicles and girders In high Speer railway. RTRI Quarterly Reports, 15, 3, 1974, 133 - 136

Klasztorny M.: Dynamika mostów belkowych obciążonych pociągami szybkobieżnymi. WNT, Warszawa 2005

Belotserkovskiy P.M.: Interaction between a railway track and uniformly moving tandem wheels. J. Sound Vibr., 298, 2006, 855 - 876

Langer J.: Dynamika budowli. WPWr, Wrocław 1980

Newmark N.M.: A method of computation for structural dynamics. ASCE J. Eng. Mechanics Div., 85, 3, 1959, 67 - 94

The influence of rail-vehicles’ properties on dynamic response of a beam bridge

Podwórna, Monika; Klasztorny, Marian. The influence of rail-vehicles’ properties on dynamic response of a beam bridge. Roads and Bridges - Drogi i Mosty, [S.l.], v. 10, n. 3, p. 63-87, apr. 2011. ISSN 2449-769X. Available at: <>. Date accessed: 27 May. 2024.