

ANDRZEJ K. DUBINIEWICZ¹⁾

PETROGRAPHIC ASSESSMENT OF THE OCCURRENCE OF POTENTIALLY ALKALI-REACTIVE SILICA IN POST-GLACIAL GRAVELS OF NORTH-WESTERN POLAND AND NORTH-EASTERN GERMANY

PETROGRAFICZNA OCENA OBECNOŚCI POTENCJALNIE REAKTYWNEJ ALKALICZNIE KRZEMIONKI W ŻWIRACH POLODOWCOWYCH PÓŁNOCNO-ZACHODNIEJ POLSKI I PÓŁNOCNO-WSCHODNICH NIEMIEC

STRESZCZENIE. W pracy przedstawiono wyniki petrograficznej oceny obecności potencjalnie reaktywnej alkalicznie krzemionki w żwirach ze złóż polodowcowych północno-zachodniej Polski i północno-wschodnich Niemiec. Analiza petrograficzna polegała na identyfikacji minerałów alkalicznie reaktywnych oraz ustaleniu formy ich wystepowania i zawartości. W kruszywach polodowcowych. które mają zróżnicowany skład, dominują okruchy skał krystalicznych. Obecne są w nich także okruchy wapieni i piaskowców oraz podrzędnie skał krzemionkowych i opalu. W ziarnach żwirów znajdują się różne formy reaktywnej krzemionki - opal, chalcedon, kwarc kryptokrystaliczny i mikrokrystaliczny oraz kwarc w stanie napreżeń. W składnikach mineralnych skał zaobserwowano przejawy procesów wtórnych, głównie kaolinityzacji plagioklazów i chlorytyzacji biotytu. Żwiry polodowcowe zaliczono do kruszyw potencjalnie reaktywnych według dokumentu RILEM AAR-1. Przeprowadzone badania potwierdziły, że analiza petrograficzna jest metoda pozwalającą w krótkim czasie stwierdzić występowanie składników szkodliwych, powinna ona jednak być stosowana w ocenie reaktywności alkalicznej kruszyw w połączeniu z innymi metodami.

SŁOWA KLUCZOWE: analiza petrograficzna, krzemionka, minerały reaktywne, procesy wtórne, reaktywność alkaliczna, żwiry polodowcowe.

ABSTRACT. The paper presents the results of petrographic assessment of the occurrence of potentially alkali-reactive silica in gravels from post-glacial deposits located in north-western Poland and north-eastern Germany. The petrographic examination consisted in identifying alkali-reactive minerals and determining the form of their occurrence and content. The post-glacial gravels. which have a varied petrographic composition, are dominated by fragments of crystalline rocks. There are also fragments of limestones and sandstones, as well as lesser quantities of siliceous rocks and opal. Gravel grains contain various forms of reactive silica - opal, chalcedony, cryptocrystalline and microcrystalline quartz and strained quartz. Mineral components of the rocks displayed traces of secondary processes, mainly plagioclase kaolinitization and biotite chloritization. The post-glacial gravels were classified as potentially reactive according to the RILEM AAR-1 document. The conducted research confirmed that the petrographic examination is a method that allows one to guickly determine the presence of harmful components, however, when testing aggregates for alkali-reactivity, it should be used in conjunction with other methods.

KEYWORDS: alkali-reactivity, petrographic examination, post-glacial gravels, reactive minerals, silica, secondary processes.

¹⁾ Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Nauk o Ziemi i Gospodarki Przestrzennej, Katedra Geologii i Hydrogeologii, ul. Lwowska 1, 87-100 Toruń; dubiniewicz@umk.pl

1. WPROWADZENIE

Reakcja alkalia-kruszywo (ang. alkali-aggregate reaction, AAR) jest zjawiskiem uznawanym za jedną z głównych, obok korozji stali zbrojeniowej, przyczyn deterioracji konstrukcji betonowych na świecie [1]. Zachodzi ona pomiędzy alkaliami pochodzącymi z cementu a kruszywami zawierającymi krzemionkę (ang. alkali-silica reaction, ASR) lub kruszywami uzyskanymi z wapieni dolomitycznych (ang. alkali-carbonate reaction, ACR) [2]. Reakcja alkalia-krzemionka występuje częściej i ma większe znaczenie w kontekście trwałości betonu niż reakcja alkalia-węglany, ponieważ znaczna część skał, z których produkowane są kruszywa, zawiera w swoim składzie mineralnym krzemionkę. W zależności od formy wykształcenia wykazuje ona różny stopień uporządkowania struktury wewnętrznej, przez co charakteryzuje się różną rozpuszczalnością. Do odmian polimorficznych SiO, , w kolejności od najbardziej do najmniej rozpuszczalnych, należy: opal, trydymit, krystobalit, chalcedon i kwarc [2]. Ten ostatni w środowisku zasadowym o wysokim pH jest zazwyczaj trwały, ale pewne jego formy - kwarc w stanie naprężeń oraz kwarc kryptokrystaliczny i mikrokrystaliczny - mogą być podatne na działanie alkaliów [2]. Kwarc o wielkości poniżej 0,01 mm (kwarc kryptokrystaliczny) uznawany jest za kwarc wysoko reaktywny, natomiast kwarc o wielkości pomiędzy 0,01 a 0,06 mm (kwarc mikrokrystaliczny) za reaktywny [3]. Obecność szkliwa wulkanicznego w skałach magmowych wylewnych może także sprzyjać zachodzeniu reakcji ASR [4]. W trakcie krzemionkowej reakcji alkalicznej tworzy się ekspansywny żel ASR, generujący wewnętrzne naprężenia w betonie, co w konsekwencji może prowadzić do jego destrukcji [5, 6].

Z węglanową reakcją alkaliczną związany jest proces dedolomityzacji. Kryształy dolomitu, znajdujące się w składzie mineralnym wapieni dolomitycznych, pod wpływem alkaliów ulegają rozpadowi, a w ich miejscu powstaje kalcyt i brucyt. Towarzyszy temu wzrost porowatości ziaren kruszywa, co sprzyja z kolei wnikaniu cieczy porowej betonu do ich wnętrza, gdzie reaguje z kryptokrystalicznym kwarcem i minerałami ilastymi, powodując szkodliwą ekspansję betonu z tym rodzajem kruszywa [7-9]. Środki zapobiegawcze stosowane w celu ograniczenia negatywnych skutków reakcji ASR, polegające m.in. na użyciu do produkcji betonu popiołów lotnych czy związków litu, w przypadku reakcji ACR są nieefektywne [10]. Na odmienny charakter tej reakcji wskazuje także to, że dochodzi do niej - w przeciwieństwie do krzemionkowej reakcji alkalicznej - w betonach o niskiej całkowitej zawartości alkaliów.

Struktura występowania w Polsce złóż kamieni blocznych i łamanych, z których produkowane są kruszywa, jest nierów-

1. INTRODUCTION

Alkali-aggregate reaction (AAR) - beside steel reinforcement corrosion - belongs to the primary causes of deterioration of concrete structures worldwide [1]. The reaction occurs between alkalis originating from cement and aggregates containing silica (alkali-silica reaction, ASR) or aggregates obtained from dolomitic limestones (alkalicarbonate reaction, ACR) [2]. The alkali-silica reaction occurs more frequently and has greater significance in terms of concrete durability than the alkali-carbonate reaction, since many rocks used in aggregate production contain silica. Depending on the form, silica displays various level of ordering of its internal structure. Polymorphs of SiO₂, in the order of decreasing solubility, include: opal, tridymite, cristobalite, chalcedony and quartz [2]. The latter is usually durable in an alkaline environment with high pH, but some of its forms - strained quartz, cryptocrystalline and microcrystalline quartz - may be susceptible to alkali reaction [2]. Quartz whose size is less than 0.01 mm (cryptocrystalline quartz) is considered highly reactive; quartz whose size is in the range from 0.01 to 0.06 mm (microcrystalline quartz) is considered reactive [3]. Occurrence of volcanic glass in volcanic igneous rocks may also contribute to ASR [4]. Alkali-silica reaction results in formation of expansive ASR gel, which generates internal stress in concrete and may, in effect, lead to concrete failure [5, 6].

Alkali-carbonate reaction is associated with the process of dedolomitization. Under the influence of alkalis, dolomite crystals occurring in dolomitic limestones are transformed into calcite and brucite. The change is associated with an increase in aggregate particle porosity, which in turn contributes to penetration of pore solution into aggregate particles, where it reacts with cryptocrystalline quartz and clay minerals, resulting in deleterious expansion of concrete [7-9]. Preventive measures taken in order to reduce the negative impact of ASR, including usage of fly ash or lithium compounds, are ineffective in the case of ACR [10]. Dissimilar character of the ACR reaction is also apparent in the fact that – unlike ASR – it occurs in concretes with low total alkali content as well.

Distribution of block and crushed stone deposits for aggregate production in Poland is uneven; it is limited to the southern and central parts of the country [11]. Deposits of igneous and metamorphic rocks are located in Lower Silesia, Opolian Silesia and Lesser Poland. The range of occurrence of sedimentary rock deposits is greater and also includes the Lublin, Łódź, Masovian, Subcarpathian, Silesian and Świętokrzyskie provinces. There are no de-

nomierna i ograniczona do południowej i środkowej części kraju [11]. Złoża skał magmowych i metamorficznych zlokalizowane sa na Dolnym Ślasku, Opolszczyźnie i w Małopolsce. Zasięg występowania złóż skał osadowych jest wiekszy i obejmuje też województwa lubelskie, łódzkie, mazowieckie, podkarpackie, śląskie i świętokrzyskie. W północnej Polsce złoża tego typu surowców skalnych nie występują, a na potrzeby budownictwa i drogownictwa sprowadzane są głównie z południowych i środkowych regionów Polski. W mniejszych ilościach importowane są również z zagranicy: w przypadku województw zachodniopomorskiego, lubuskiego i wielkopolskiego z Niemiec, a województw pomorskiego i kujawsko-pomorskiego – ze Szwecji i Niemiec [12]. Alternatywe dla tych kruszyw mogą stanowić powszechnie występujące w tych rejonach kruszywa polodowcowe, które na ogół charakteryzują się dobrymi – zbliżonymi do kruszyw ze skał magmowych – właściwościami fizyko-mechanicznymi [13, 14]. W kruszywach polodowcowych, pomimo ich dobrych parametrów, mogą znajdować się jednak ziarna skał, które w przypadku zastosowania do produkcji betonu spowodują zajście w nim szkodliwej reakcji alkalia-kruszywo. Metoda pozwalającą na stwierdzenie obecności tego rodzaju ziaren sa badania petrograficzne.

2. MATERIAŁY I METODYKA BADAWCZA

Przedmiotem badań były żwiry polodowcowe o wielkości uziarnienia 8-16 mm, które zostały pobrane, w ilości po 10 kg, ze składowisk pięciu kopalni – czterech zlokalizowanych w północno-zachodniej Polsce i jednej położonej w północno-wschodnich Niemczech. Ziarna tych kruszyw zostały scharakteryzowane według norm PN-EN 932-3 [15] i PN-EN 12407 [16]. W obserwacjach makroskopowych uwzględniono ich barwę, cechy teksturalno-strukturalne i charakter reakcji z kwasem solnym. Na tej podstawie żwiry rozdzielono według występujących w nich skał, określając ich udziały masowe.

Z wybranych odmian litologicznych zostało wykonanych 36 preparatów mikroskopowych do szczegółowych badań petrograficznych. W oparciu o normę ASTM C295/C295M-19 [17] i zalecenia zawarte w dokumencie RILEM AAR-1 [18] dokonano wstępnej oceny reaktywności alkalicznej kruszyw polodowcowych, polegającej na identyfikacji alkalicznie mało odpornych minerałów krzemionkowych w okruchach skał oraz ustaleniu ich zawartości i formy występowania. Mikroskopową analizę ilościową wykonano metodą punktową na podstawie 300 zliczeń. Do badań petrograficznych wykorzystano mikroskop polaryzacyjny Nikon wyposażony w kamerę cyfrową Nikon DS-FI1 o rozdzielczości 5 mln pikseli. posits of such resources in the north of Poland; aggregates for construction of structures and roads are imported, mainly from the central and southern regions of Poland. Lesser quantities are also imported from abroad: from Germany in the case of West Pomeranian. Lubuskie and Greater Poland provinces and from Sweden and Germany in the case of Pomeranian and Kuyavian-Pomeranian provinces [12]. Post-glacial aggregates, which are common in those regions and usually demonstrate good physico-mechanical properties (similar to those of igneous rock aggregates), may serve as an alternative to the aforementioned aggregates [13, 14]. However, despite their good parameters, post-glacial aggregates may contain particles of rocks that would cause the detrimental AAR reaction when used in concrete. Petrographic tests enable identification of such potentially deleterious components.

2. MATERIALS AND TEST METHODS

The research was performed on post-glacial gravels with particle size of 8-16 mm, which were sampled (at the quantity of 10 kg each) from five gravel pits – four located in north-western Poland and one located in north-eastern Germany. Aggregate particles were characterized in accordance with the PN-EN 932-3 [15] and PN-EN 12407 [16] standards. Macroscopic observations included color, textural-structural features and the character of reaction with hydrochloric acid. Based on the observations, gravels were classified according to the rocks they contained; content of particular rocks by mass was determined.

Selected lithological varieties were used for preparation of 36 microscopic thin sections for detailed petrographic examination. Based on the ASTM C295/C295M-19 standard [17] and the guidelines given in the RILEM AAR-1 document [18], preliminary assessment of alkali-reactivity of post-glacial aggregates was performed, consisting in identification of potentially susceptible silica minerals in rock particles, in combination with determination of their form and content. Microscopic quantitative analysis was performed using the point counting method, based on 300 counts. Petrographic testing was performed using a Nikon polarizing microscope fitted with a Nikon DS-FI1 digital camera with 5 million pixel count.

3. TEST RESULTS

Particles of carbonate rocks are the main component of the majority of the tested post-glacial gravels (Table 1). Together with particles of marble and single particles of

3. WYNIKI BADAŃ

Głównym składnikiem większości badanych żwirów polodowcowych są ziarna skał weglanowych (Tabl. 1), które wraz z ziarnami marmurów i pojedynczymi ziarnami piaskowców jako jedvne reagowały z kwasem solnym. Sa to wapienie masywne, organogeniczne z fragmentami bioklastów, o barwie jasnoszarej po jasnożółtą, ciemnoszarej lub jasnoróżowej po jasnoczerwona. Wśród nich wyraźnie przeważaja okruchy wapieni jasnoszarych do jasnożółtych. W tle tych skał znajdują się ziarna kwarcu (0,02-0,03 mm), które maja wydłużony kształt i średni stopień obtoczenia. Ich udział waha się od 0,31 do 0,60% obj. Oprócz kwarcu występuje w nich także chalcedon (do 2,11% obj.) (Rys. 1a). Wapienie ciemnoszare charakteryzują się podobnym udziałem ziaren kwarcu (do 0,76% obi.), co wapienie od jasnoszarych do jasnożółtych. Mają one zbliżone do nich rozmiary (0,02-0,04 mm), izometryczny lub wydłużony kształt (Rys. 1b), ale są przy tym nieco gorzej obtoczone. Zawartość chalcedonu również nie przekracza w tej odmianie 0,76% obj. Ziarna kwarcu w odmianie ciemnoszarej oraz jasnoszarej do jasnożółtej wykazują nierównomierne wygaszanie światła. Najmniej krzemionki zawierają wapienie jasnoróżowe do jasnoczerwonych - zawartość chalcedonu wynosi maksymalnie 0,57% obj. We wszystkich wapieniach występowanie chalcedonu związane jest z bioklastami. W składzie mineralnym wyróżnionych odmian wapieni sporadycznie obecne są także minerały nieprzezroczyste oraz dolomit.

sandstone, they were the only particles that reacted with hydrochloric acid. The limestone particles are massive, organogenic, with fragments of bioclasts; their color is light gray to light yellow, dark gray, or light pink to light red. Fragments of light gray to light yellow limestones are dominant. Rock groundmass contains grains of quartz (0.02-0.03 mm), which are elongated and moderately rounded. Their content ranges from 0.31 to 0.60% by volume. Apart from quartz, chalcedony is also observable (up to 2.11% by volume) (Fig. 1a). Dark gray limestones display content of quartz (up to 0.76% by volume) similar to that of light gray to light yellow limestones. Grains have similar size (0.02-0.04 mm) and isometric or elongated shape (Fig. 1b), but they are slightly less rounded. The content of chalcedony does not exceed 0.76% by volume as well. Grains of quartz in the dark gray and light gray to light vellow varieties exhibit non-uniform extinction. Light pink to light red limestones contain the least silica chalcedony content does not exceed 0.57% by volume. Presence of chalcedony in all the limestones is associated with bioclasts. The identified varieties of limestones sporadically also contained opaque minerals and dolomite.

Table. 1. Petrographic composition of post-glacial gravels from north-western Poland and north-eastern Germany Tablica 1. Skład petrograficzny żwirów polodowcowych północno-zachodniej Polski i północno-wschodnich Niemiec

	Petrographic composition of gravels [mass]/ Skład petrograficzny żwirów [% mas.]						
Type of rock – lithological variety Rodzaj skał – odmiana litologiczna	Pit I, NW Poland Kopalnia I NW Polska	Pit II, NW Poland Kopalnia II NW Polska	Pit III, NW Poland Kopalnia III NW Polska	Pit IV, NW Poland Kopalnia IV NW Polska	Pit V, NE Germany Kopalnia V NE Niemcy		
Limestones / Wapienie	25.22	41.50	34.83	17.62	44.57		
- light gray to light yellow / jasnoszara do jasnożółtej [*])	13.42	34.90	31.25	15.05	40.21		
– dark gray / ciemnoszara ^{*)}	11.44	3.01	1.66	0.00	1.46		
– light pink to light red / jasnoróż. do jasnoczerw.*)	0.36	3.59	1.92	2.57	2.90		
Sandstones / Piaskowce	16.50	12.54	11.70	16.17	20.71		
 light gray to light yellow / jasnoszara do jasnożółtej[*]) 	1.15	1.84	2.96	0.00	2.79		
– dark gray / ciemnoszara	5.72	5.49	3.70	14.94	5.48		
– light pink to light red / jasnoróż. do jasnoczerw.*)	9.63	5.21	5.04	1.23	12.44		
Granites / Granity	24.84	17.35	28.33	28.07	19.74		
– pink / różowa ^{*)}	7.10	9.37	10.49	14.80	4.07		
- red / czerwona ^{*)}	12.32	6.13	12.87	7.80	12.30		
– white-and-black / biało-czarna ^{*)}	1.39	1.34	2.00	5.47	2.94		
– black-and-white / czarno-biała ^{*)}	4.03	0.51	2.97	0.00	0.43		
Pegmatites / Pegmatyty	1.35	0.25	0.00	2.87	0.09		
Diorites / Dioryty [*])	0.80	0.00	0.46	0.97	0.00		
Basalts, diabases / Bazalty, diabazy ^{*)}	0.00	0.00	0.57	1.46	0.39		

Table 1. (continued)

Tablica 1. (ciąg dalszy)

	Petrographic composition of gravels [mass %] / Skład petrograficzny żwirów [% mas.]							
Type of rock – lithological variety Rodzaj skał – odmiana litologiczna	Pit I, NW Poland Kopalnia I NW Polska	Pit II, NW Poland Kopalnia II NW Polska	Pit III, NW Poland Kopalnia III NW Polska	Pit IV, NW Poland Kopalnia IV NW Polska	Pit V, NE Germany Kopalnia V NE Niemcy			
Porphyries / Porfiry	1.29	1.74	2.51	4.11	0.75			
– quartzless / bezkwarcowe ^{*)}	1.29	1.74	2.51	4.11	0.55			
– quartz / kwarcowe	0.00	0.00	0.00	0.00	0.20			
Gneiss / Gnejsy	21.29	11.98	5.67	19.07	5.26			
– pink / różowa ^{*)}	8.50	4.27	2.67	8.01	1.20			
- red / czerwona [*])	6.71	6.10	1.80	9.15	1.05			
- black-and-red / czarno-czerwona ^{*)}	3.60	1.14	1.20	1.91	2.64			
– gray / szara	2.48	0.47	0.00	0.00	0.37			
Quartzites / Kwarcyty	8.71	9.75	12.55	8.93	5.88			
– light gray to light yellow / jasnoszara do jasnożółtej [*])	2.65	3.60	7.87	4.20	1.42			
– dark gray / ciemnoszara	3.88	3.37	1.59	0.85	2.66			
– light pink to light red / jasnoróż. do jasnoczerw.*)	2.18	2.15	3.09	3.88	1.80			
- other / inne ^{*)}	0.00	0.63	0.00	0.00	0.00			
Siliceous rocks / Skały krzemionkowe*)	0.00	3.62	3.38	0.48	1.96			
Particles of opal / Ziarna opalu ^{*)}	0.00	0.13	0.00	0.00	0.00			
Single particles of quartz / Pojedyncze ziarna kwarcu [*])	0.00	1.14	0.00	0.00	0.65			
Marbles / Marmury	0.00	0.00	0.00	0.25	0.00			
(*)								

*) rocks subjected to microscopic analysis / skały poddane badaniom mikroskopowym

Ziarna granitów stanowią drugi najliczniejszy składnik kruszyw (Tabl. 1). Reprezentowane są one głównie przez granity różowe i czerwone oraz – w mniejszej ilości – przez granity biało-czarne i czarno-białe. Tekstura wszystkich odmian jest masywna, przeważnie nieuporzadkowana, za wyjatkiem odmian różowej i czarno-białej, w których miejscami jest ona kierunkowa z równoległym ułożeniem minerałów ciemnych. Granity różowe i biało-czarne mają strukturę nierównokrystaliczna, od drobnokrystalicznej po grubokrystaliczna. Struktura granitów czerwonych jest również nierównokrystaliczna, ale wielkość kryształów zmienia się od drobnych po średnie. W odróżnieniu od nich granity czarno-białe mają strukturę grubokrystaliczna. W granitach różowych udział kwarcu waha się od 20,69 do 64,55% obj. Kwarc występuje w postaci pojedynczych kryształów o rozmiarach w zakresie 0,11-6,20 mm lub sporadycznie w formie zrostów myrmekitowych. W odmianie czerwonej zawartość kwarcu (0,02-0,71 mm) waha się od 11,14 do 29,74% obj., przy czym udział kwarcu o rozmiarach pomiędzy 0,01 a 0,06 mm nie przekracza 3,54% obj. W składzie mineralnym obu tych odmian znajduja się ponadto skalenie alkaliczne i plagioklazy. W granitach różowych występuje również biotyt i muskowit, a w granitach czerwonych chloryt, amfibole, minerały nieprzezroczyste Particles of granite are the second most frequent component of the tested aggregates (Table 1). They are represented mainly by pink granite, red granite and - in lesser quantities - white-and-black and black-and-white granites. Texture of those varieties is massive, mostly unordered, with the exception of pink and black-and-white granites, in which the texture is sometimes directional. with parallel orientation of mafic minerals. Pink and white-and-black granites have uneven crystalline structure, from fine to coarse. The structure of red granites is also uneven, but the size of crystals ranges from fine to medium. In contrast, black-and-white granites have coarse crystalline structure. Content of quartz in pink granites ranges from 20.69 to 64.55% by volume. Quartz occurs in the form of individual crystals of 0,11-6,20 mm in size, or - sporadically - in the form of myrmekite intergrowths. In the red variety, the content of quartz (0.02-0.71 mm) ranges from 11.14 to 29.74% by volume, but the content of quartz with the size of 0.01-0,06 mm does not exceed 3.54% by volume. Both the red and pink varieties contain alkali feldspars and plagioclases as well. Pink granites contain also biotite and muscovite; red granites contain chlorite, amphiboles, opaque minerals and allanite.

i allanit. W przeciwieństwie do nich w granitach biało-czarnych, oprócz kwarcu monokrystalicznego (0,45-0,85 mm), obecny jest też kwarc mający budowę polikrystaliczną (1,70-3,95 mm) - całkowity jego udział wynosi od 14,35 do 32,67% obj. W odmianie czarno-białej kwarc, stanowiący od 19,75 do 27,00% obj., jest z kolei wyłącznie polikrystaliczny (1,07-3,45 mm). Granity biało-czarne i czarno-białe zbudowane są poza tym z plagioklazów, skaleni alkalicznych i biotytu; w odmianie biało-czarnej akcesorycznie występuje także muskowit, zaś w odmianie czarno-białej – minerały nieprzezroczyste oraz granaty i cyrkon. We wszystkich granitach kryształy kwarcu mają pokrój anhedralny, są spękane i wygaszaja nierównomiernie światło (Rys. 1c). Udział okruchów innych skał magmowych głębinowych, takich jak pegmatyty i dioryty, jest niewielki (Tabl. 1). Pegmatyty, podobnie jak granity różowe i czerwone, zbudowane są ze skaleni alkalicznych i kwarcu oraz nielicznych blaszek muskowitu i biotytu, przy czym składniki te są bardziej grubokrystaliczne. Dioryty, których barwa jest czarna, miejscami ciemnoszara, mają teksturę masywną, bezładną i strukturę drobnokrystaliczną. Zawartość kwarcu (0,04-0,21 mm) nie przekracza w nich 3,21% obj., z czego niemal połowa to kwarc o wielkości nie większej niż 0,06 mm. Występuje on w interstycjach pomiędzy plagioklazami i amfibolami lub w formie wrostków wewnątrz tych drugich i w niewielkim stopniu wygasza światło smużyście. W diorytach podrzędnie występuje też biotyt, epidot i minerały nieprzezroczyste.

Udział ziaren skał magmowych wylewnych w porównaniu do ziaren skał magmowych głębinowych jest wyraźnie mniejszy i jednocześnie zaznacza się w nich przewaga skał kwaśnych (porfirów) nad skałami zasadowymi - bazaltami i diabazami (Tabl. 1). Porfiry występuja przede wszystkim w odmianie bezkwarcowej, rzadziej zaś w odmianie kwarcowej. Barwa ich jest wiśniowa, niekiedy z odcieniem fioletowawym. Mają teksture masywna, bezładna i strukture porfirowa. Porfiry bezkwarcowe zbudowane sa z mikrokrystalicznej, kwarcowo-skaleniowej masy skalnej (55,45-64,13% obj.) (Rys. 1d), w której tkwią fenokryształy skaleni alkalicznych, plagioklazów, biotytu oraz piroksenów, tytanitu i minerałów nieprzezroczystych, podczas gdy w cieście skalnym porfirów kwarcowych znajdują się także fenokryształy kwarcu. Diabazy i bazalty charakteryzują się barwą od ciemnoszarej po czarną, teksturą masywną, bezładną i strukturą afanitową lub drobnokrystaliczną. Zbudowane są one z kryształów plagioklazów i piroksenów oraz podrzednie oliwinów.

Udział ziaren gnejsów w analizowanych żwirach jest zmienny (Tabl. 1). Wyróżniono wśród nich odmiany różową, czerwoną, czarno-czerwoną i szarą. Gnejsy te mają teksturę masywną In contrast, the white-and-black granites contain not only monocrystalline quartz (0.45-0.85 mm), but also polycrystalline quartz (size of 1.70-3.95 mm) - its total content ranges from 14.35 to 32.67% by volume. In the black-and-white variety of granite, quartz constitutes from 19.75 to 27.00% by volume and it is solely polycrystalline (1.07-3.45 mm). The white-and-black and black-and-white granites also composed of plagioclases, alkali feldspars and biotite; the white-and-black variety contains accessory muscovite, while the black-and-white variety contains accessory opaque minerals, garnets and zircon. Crystals of quartz in all the granites are anhedral, fractured and display uneven extinction (Fig. 1c). Content of fragments of other plutonic igneous rocks such as pegmatites and diorites is low (Table 1). Pegmatites – like pink and red granites – are composed of alkali feldspars, quartz and sparse flakes of muscovite and biotite, whereas these components have coarser crystals. Diorites, whose color is black (locally dark gray) have massive and unordered texture and fine crystalline structure. Their content of quartz (0.04-0.21 mm) does not exceed 3.21% by volume, of which almost half is no larger than 0.06 mm. Quartz occurs either in interstices between plagioclases and amphiboles or as inclusions in the latter. The extinction of quartz is gradual in bands. Diorites also contain small quantities of biotite, epidote and opaque minerals

The content of particles of volcanic igneous rocks is visibly lower than the content of particles of plutonic igneous rocks; at the same time, whereby the content of felsic rocks (porphyries) is greater than the content of mafic rocks - basalts and diabases (Table 1). Porphyries occur primarily in the quartzless variety; the quartz-porphyry variety is rarer. Their color is cherry, sometimes with violet hue. Their texture is massive and unordered; the structure is porphyritic. Quartzless porphyries are composed of microcrystalline, quartz-feldspar rock groundmass (55.45-64.13% by volume) (Fig. 1d), with embedded phenocrysts of alkali feldspars, plagioclases, biotite and pyroxenes, titanite and opaque minerals, whereas the fine-grained groundmass of quartz porphyries contains also phenocrysts of quartz. Diabases and basalts are characterized by dark gray to black color, massive and unordered texture and fine crystalline or aphanitic structure. They are composed of plagioclase and pyroxene crystals, with lesser quantities of olivines.

The proportion of particles of gneisses in the analyzed gravels is variable (Table 1). Pink, red, black-and-red and gray varieties have been identified. These gneisses have

i uporządkowaną. W odmianie różowej wydłużone blasty kwarcu i biotytu układają się równolegle, w odmianie czerwonej ułożone w ten sposób sa blasty skaleni alkalicznych i kwarcu, a w odmianie czarno-czerwonej - minerały ciemne. W odmianie szarej kierunkowość przejawia się z kolei obecnością naprzemianległych lamin kwarcowo-skaleniowych i biotytowych. Gneisy różowe maja strukture nierównoblastyczna, średnioblastyczną i miejscami drobnoblastyczną, a gnejsy czerwone, czarno-czerwone i szare - nierównoblastyczna, od drobnoblastycznej po gruboblastyczną. W gnejsach różowych blasty kwarcu maja rozmiary od 0,11 do 2,60 mm i tworza laminy o grubości od 0,70 do 3,85 mm. Stanowią one od 25,01 do 30,28% obj. W odmianie czerwonej blasty kwarcu, które także występuja w laminach (1.60-3.65 mm szerokości), maja wielkość wahającą się od 0,04 do 0,43 mm. Całkowity Udział kwarcu w gnejsach czerwonych wynosi od 31,86 do 71,57% obj., z czego udział kwarcu o wielkości 0,01-0,06 mm wynosi od 0,99 do 7,40% obj., a kwarcu o wielkości do 0,01 mm (Rys. 1e) - nie przekracza 7,73% obj. W gnejsach czarno-czerwonych zawartość kwarcu, który ma rozmiary w zakresie 0,07-0,43 mm, jest mniejsza i waha się od 4,90 do 8,91% obj. W gnejsach różowych, czerwonych i czarno-czerwonych kwarc wykazuje deformację struktury wewnętrznej. Gnejsy, niezależnie od odmiany, poza kwarcem, zbudowane sa ze skaleni alkalicznych, plagioklazów i biotytu, a w niektórych z odmian występują także pirokseny, amfibole, epidot, muskowit, minerały nieprzezroczyste i tytanit.

Ziarna piaskowców i kwarcytów - mające barwę jasnoszarą po jasnożółta, ciemnoszara lub jasnoróżowa po jasnoczerwoną – w kruszywach są rzadsze niż ziarna granitów (Tabl. 1). W materiale z jednej kopalni zidentyfikowano również pojedyncze ziarno kwarcytu zbudowane z jednej warstwy o barwie łososiowej i drugiej o barwie groszkowej. Piaskowce mają teksturę masywną. Drobnoziarniste składniki układają się w nich równolegle względem siebie. W piaskowcach jasnoszarych do jasnożółtych wydłużone ziarna kwarcu (86,03-93,40% obj.) mają rozmiary w zakresie 0,07-0,44 mm, są dobrze obtoczone i kontaktują się ze sobą w sposób prosty lub wklesło-wypukły. Wokół nich obecne sa kwarcowe obwódki regeneracyjne o grubości do 0,02 mm. Ziarna scementowane są spoiwem chalcedonowym (1,74-9,63% obj.) (Rys. 1f). W piaskowcach jasnoróżowych do jasnoczerwonych ziarna kwarcu (0,10-0,63 mm) stanowią od 83,50 do 92,43% obj. Są one dobrze obtoczone, mają izometryczny lub wydłużony kształt, a pomiędzy nimi występują kontakty proste. Część z nich otoczona jest autigenicznymi obwódkami kwarcu o grubości do 0,06 mm. Spoiwem, które je łączy, jest cement chalcedonowy (4,61-12,19% obj.). Rolę szkieletu ziarnowego w piaskowcach pełnią także ziarna skaleni alkalicznych,

a massive and ordered texture. In the pink variety, elongated blasts of quartz and biotite display parallel orientation; in the red variety the same orientation is displayed by blasts of alkali feldspars and quartz, whereas in the black-and-red variety - by mafic minerals. In the gray variety, the directional orientation may be observed in the form of alternating laminae of quartz-feldspars and biotites. Pink gneisses are characterized by uneven, medium and locally fine - blastic structure, whereas red, black-and-red and gray gneisses display uneven blastic structure, from fine to coarse. In pink gneisses, blasts of quartz have the size of 0.11 to 2.60 mm. They form laminae, whose thickness ranges from 0.70 to 3.85 mm. They constitute 25.01 to 30.28% by volume. In the red variety, blasts of guartz, which also occur in laminae (1.60-3.65 mm in width), have the size ranging from 0.04 to 0.43 mm. The total content of quartz in red gneisses ranges from 31.86 to 71.57% by volume, with content of quartz of the size 0.01-0.06 mm ranging from 0.99 to 7.40% by volume, and the content of quartz of the size up to 0.01 mm (Fig. 1e) not exceeding 7.73% by volume. In black-and-red gneisses, the content of quartz (whose size ranges from 0.07 to 0.43 mm) is lower and ranges from 4.90 to 8.91% by volume. Quartz occurring in pink, red and black-and-red gneisses exhibits deformed internal structure. Gneisses, regardless of the variety, also contain alkali feldspars, plagioclases and biotite. Moreover, in some of them occur pyroxenes, amphiboles, epidote, muscovite, opaque minerals and titanite.

Particles of sandstones and quartzites - whose color is light gray to light yellow, dark gray or light pink to light red – occur in the aggregates less frequently than particles of granites (Table 1). In material originating from one of the pits, single particle of quartzite was also identified that was composed of one salmon-pink layer and one pea-green layer. Sandstones have a massive texture. Their fine-grained constituents are arranged in a parallel manner. In light gray to light yellow sandstones, elongated grains of quartz (86.03-93.40% by volume) display the size of 0.07-0.44 mm; they are well-rounded, with long or concavo-convex contacts. They are surrounded with quartz overgrowths with a thickness of up to 0.02 mm. The grains are bound with chalcedony cement (1.74-9.63% by volume) (Fig. 1f). In light pink to light red sandstones, grains of quartz (0.10-0.63 mm) comprise from 83.50 to 92.43% by volume. They are well-rounded, with isometric or elongated shape and long contacts. Some grains are surrounded with authigenic quartz overgrowth of up to 0.06 mm. The grains are bonded together with chalcedony cement (4.61-12.19% by volume). The role of grain

muskowitu, glaukonitu, turmalinu, epidotu, tytanitu i minerałów nieprzezroczystych, rolę spoiwa zaś cement kalcytowy i żelazisty. Tekstura kwarcytów jest masywna, zazwyczaj uporządkowana – wydłużone blasty kwarcu układają się w jednym kierunku, natomiast ich struktura jest nierównoblastyczna, od drobnoblastycznej po średnioblastyczną. W odmianie jasnoszarej do jasnożółtej kwarc (0,07-0,85 mm) stanowi od 88,50 do 92,40% obj. Pomiędzy nimi znajduje się spoiwo składające się z mikrokrystalicznego kwarcu (0,80-11,50% obj.). Podrzednie w kwarcytach jasnoszarych do jasnożółtych występują też skalenie alkaliczne, muskowit oraz spoiwo ilaste i żelaziste. W kwarcytach jasnoróżowych do jasnoczerwonych udział blastów kwarcu (0,15-2,60 mm) waha się z kolei od 66,45 do 92,88% obj., a udział spajającego je kwarcu mikrokrystalicznego jest mniejszy niż 17,74% obj. W ich składzie mineralnym występują także skalenie alkaliczne, muskowit, chloryt i epidot oraz spoiwo żelaziste. W odróżnieniu do nich kwarcyty ciemnoszare, podobnie jak piaskowce ciemnoszare, zawierają podwyższone ilości biotytu. W dwudzielnym ziarnie kwarcytu o barwie łososiowo-groszkowej średni udział kwarcu (0,07-2,65 mm) wynosi prawie 50% obj. Obok niego w składzie mineralnym znajdują się skalenie alkaliczne, fuchsyt, plagioklazy oraz muskowit i minerały nieprzezroczyste. W piaskowcach i kwarcytach ziarna i blasty kwarcu wykazują faliste wygaszanie światła.

Z punktu widzenia trwałości betonu bardzo istotny w kruszywach jest udział skał krzemionkowych. W badanych żwirach ich udział nie przekracza 4% masy (Tabl. 1). Reprezentowane są one zarówno przez skały krzemionkowe pochodzenia organogenicznego (spongiolity), jak i chemicznego (głównie krzemienie i rzadziej czerty). Skały te mają rozmaite barwy - jasnokremowe, rdzawe, szare lub niemal czarne. Zbudowane sa prawie wyłącznie z chalcedonu (ponad 93% obj.), a w przypadku skał organogenicznych także ze schalcedonizowanych spikul gabek (4,03-5,65% obj.) (Rys. 1g). Ziarna opalu znajduja się tylko w jednym kruszywie z północno-zachodniej Polski. Składają się one w ponad 95% obj. z amorficznej krzemionki (Rys. 1h), która miejscami uległa rekrystalizacji w mikrokrystaliczny kwarc, stanowiący do 0,60% obj.. Skały krzemionkowe i ziarna opalu zawierają zazwyczaj również domieszkę minerałów nieprzezroczystych.

W żwirach polodowcowych występują również pojedyncze ziarna kwarcu i marmurów (Tabl. 1). Te pierwsze, zazwyczaj półprzezroczyste, mają barwę jasnoszarą, miodową lub ciemnoszarą. Te drugie, zbudowane niemal wyłącznie z kalcytu, mają z kolei barwę kremową, niekiedy z odcieniem lekko różowym. Tekstura ich jest masywna, bezładna, a struktura drobnoblastyczna.

skeleton in sandstones is also fulfilled by alkali feldspars, muscovite, glauconite, tourmaline, epidote, titanite and opaque minerals, which are bound with by ferruginous and calcite cement. The texture of quartzites is massive, usually ordered - elongated blasts of quartz are oriented along one direction, while their structure is uneven, from fine-blastic to medium-blastic. In the light gray to light vellow variety, quartz grains (0.07-0.85 mm) constitute from 88.50 to 92.40% by volume. They are bound by microcrystalline quartz cement (0.80-11.50% by volume). Light gray to light vellow quartzites also contain small quantities of alkali feldspars and muscovite, as well as ferruginous and clay cement. In the light pink to light red quartzites, the content of quartz blasts (0.15-2.60 mm) ranges from 66.45 to 92.88% by volume, while the content of microcrystalline quartz that binds them is no greater than 17.74% by volume. These quartzites also contain alkali feldspars, muscovite, chlorite, epidote and ferruginous cement. In contrast, dark gray quartzites (like dark gray sandstones) contain increased quantities of biotite. In the particle of quartzite composed of salmon-pink and pea-green layers, the average content of quartz (0.07-2.65 mm) equals almost 50% by volume. In the mineral composition also occur alkali feldspars, fuchsite, plagioclases, muscovite and opaque minerals. In sandstones and quartzites, the grains and blasts of quartz display undulatory extinction.

In terms of concrete durability, a factor of great importance is the content of siliceous rocks in aggregate. Their content in the analyzed gravels don't exceed 4% by mass (Table 1). Siliceous rocks are represented both by organogenic rocks (spongiolites) and chemical rocks (mainly flints, less frequently cherts). These rocks have very varied colors light cream, rusty, gray or nearly black. They are composed almost entirely of chalcedony (over 93% by volume), and, in the case of organogenic rocks, also of chalcedonized sponge spicules (4.03-5.65% by volume) (Fig. 1g). Particles of opal were noted only in one aggregate from north-western Poland. They consist (over 95% by volume) of amorphous silica (Fig. 1h), which has undergone partial recrystallization into microcrystalline quartz, constituting up to 0.60% by volume. Siliceous rocks and particles of opal usually also contain small quantities of opaque minerals.

In the post-glacial gravels also occur single particles of quartz and marbles (Table 1). The former, usually semitransparent, are light gray, honey or dark gray. The latter, composed almost mainly of calcite, have a creamy color, sometimes with slightly pink hue. Their texture is massive and unordered, while the structure is fine-blastic.

g)

Niektóre ze składników mineralnych ziaren kruszyw, głównie tych pochodzących ze skał magmowych i gnejsów, uległy procesom wtórnym. Zmiany te widoczne są zwłaszcza w tabliczkach plagioklazów i blaszkach biotytów. We wszystkich granitach, gnejsach różowych i czarno-czerwonych, porfirach bezkwarcowych i diorytach doszło w różnym stopniu do kaolinityzacji plagioklazów oraz do chlorytyzacji biotytu. Temu drugiemu procesowi uległy także słupki amfiboli, znajdujące się w granitach i gnejsach czerwonych. W porfirach bezkwarcowych część biotytu uległa również opacytyzacji. W gnejsach czarno-czerwonych obserwuje się ponadto drobne łuseczki serycytu, które powstały kosztem skaleni potasowych. Z kolei w diabazach oliwiny uległy przeobrażeniu w serpentyn. Przykłady tych zmian zostały pokazane na Rys. 2. Some mineral components of aggregate particles, mainly those originating from igneous rocks and gneisses, have undergone secondary processes. These changes are particularly apparent in plagioclase tablets and biotite flakes. Various degrees of kaolinitization of plagioclase and chloritization of biotite have occurred in all the granites, pink and black-and-red gneisses, quartzless porphyries and diorites. Chloritization of biotite was also observed in amphibole rods found in red granites and gneisses. Part of biotite in quartzless porphyries has also undergone opacitization. In black-and-red gneisses also are present fine flakes of sericite, which were formed by the transformation of potassium feldspars. In diabases, olivines were transformed into serpentine. Examples of such changes are shown in Fig. 2.

Fig. 2. Examples of secondary processes in mineral components (microscopic view in transmitted light, crossed polarizers): a) kaolinitization of plagioclase (arrow), b) chloritization of biotite (arrows), c) serpentinization of olivine (arrows) Rys. 2. Przykłady procesów wtórnych w składnikach mineralnych (obraz mikroskopowy w świetle przechodzącym, polaryzatory skrzyżowane): a) kaolinityzacja tabliczki plagioklazu (strzałka), b) chlorytyzacja blaszek biotytu (strzałki), c) serpentynizacja oliwinów (strzałki)

4. DYSKUSJA

W składzie petrograficznym żwirów polodowcowych północno-zachodniej Polski i północno-wschodnich Niemiec obecne są ziarna pochodzące z różnych skał, co ma związek z polodowcową genezą złóż tych surowców. Materiał skalny w trakcie plejstoceńskich zlodowaceń przenoszony był na obszar Polski przez nasuwający się z północy lądolód skandynawski, a jego petrograficzne zróżnicowanie jest konsekwencja różnych kierunków transgresji lądolodu. Znajdować się w nim mogą fragmenty skał z półwyspu Fennoskandzkiego, jak również z niecki Bałtyku i wysp bałtyckich oraz państw nadbałtyckich [19, 20]. W badanych żwirach dominują ziarna skał krystalicznych (skał magmowych i metamorficznych oraz pojedynczych ziaren kwarcu z tych skał), których średni udział wynosi 49,81% masy. Duży jest też udział okruchów wapieni (średnio 32,75% masy). Pozostałe skały osadowe – piaskowce stanowią średnio 15,52% masy kruszyw polodowcowych, zaś

4. DISCUSSION

Petrographic composition of post-glacial gravels from north-western Poland and north-eastern Germany shows particles coming from various rocks, which is associated with the post-glacial origin of the deposits. During the Pleistocene glacial periods, rock material was transported to the territory of today's Poland by the Scandinavian Ice Sheet. The petrographic variability of the material results from various directions of transgression of the ice sheet. It may contain fragments of rocks from the Fennoscandian Peninsula, as well as from the Baltic basin, Baltic islands and Baltic Rim countries [19, 20]. The analyzed gravels are dominated by particles of crystalline rocks (igneous rocks, metamorphic rocks and single grains of quartz from these rocks), whose average content is 49.81% by mass. The content of particles of limestones is also considerable (average of 32.75% by mass). The remaining sedimentary skały krzemionkowe i opal średnio 1,92% ich masy. Różnice w składzie pomiędzy poszczególnymi żwirami mogą wynikać z niejednorodności materiału skalnego pozostawionego w poszczególnych rejonach przez lądolód skandynawski oraz ze zmienności złóż polodowcowych. Jednocześnie skład opisywanych żwirów jest zbliżony do składu żwirów polodowcowych z północno-wschodniej Polski, opisanych przez Wyszomirskiego i in. [21], z tą różnicą, że w badanych kruszywach przeważają okruchy skał krystalicznych nad okruchami skał węglanowych.

Badania mikroskopowe pozwalają na prostą i szybką identyfikację składników mineralnych ziaren kruszyw, które mogą być mało odporne w środowisku alkalicznym betonu. W zależności od wyników obserwacji kruszywa zaliczane są do następujących kategorii: kruszywa prawdopodobnie niereaktywne (kategoria I), kruszywa potencjalnie reaktywne (kategoria II) i kruszywa prawdopodobnie reaktywne (kategoria III) [18]. W przypadku kategorii II i III należy także podać informację, czy kruszywa mogą być podatne na reakcję ASR, ACR lub obie te reakcje jednocześnie, dodając do kategorii odpowiednio sufiks: -S, -C lub -SC. Wytyczne zawarte w dokumencie RILEM AAR-1 [18] podaja, że wyniki badań petrograficznych powinny być odniesione do regionalnych doświadczeń i krajowych norm. W Polsce na brak tego typu dokumentów i specyfikacji już wcześniej wskazywali m.in. Naziemiec i Pabiś-Mazgaj [22] oraz Jóźwiak-Niedźwiedzka i in. [23]. Zatem na podstawie badań petrograficznych kruszywa zawierające jakąkolwiek formę reaktywnej krzemionki, niezależnie od jej ilości, trzeba uznać za potencjalnie reaktywne i poddać dalszym badaniom, np. według metody przyspieszonej opisanej w dokumencie RILEM AAR-2 [24] lub metody długotrwałej RILEM AAR-3 [25], polegającej na określeniu wydłużenia próbek zapraw bądź betonów wykonanych z użyciem badanych kruszyw.

Według National Ready Mixed Concrete Association [26] za potencjalnie reaktywne uznawane są kruszywa zawierające więcej niż:

- 0,5% opalu,
- 1,0% trydymitu lub krystobalitu,
- 3,0% chalcedonu,
- 3,0% szkliwa wulkanicznego,
- 5,0% kwarcu kryptokrystalicznego i mikrokrystalicznego lub kwarcu w stanie naprężeń.

Ziarna opalu zostały stwierdzone tylko w jednym z kruszyw, a ich udział jest mniejszy od ustalonej przez NRMCA [26] dopuszczalnej granicy. Ta amorficzna forma krzemionki w procesach diagenezy – obejmujących pogrążanie się osadów w miejsca, gdzie panuje wyższe ciśnienie i temperatura – ulega rocks – sandstones constitute on average 15.52% of post-glacial aggregates by mass, while siliceous rocks and opal 1.92% by mass. The differences in composition between particular each gravel may result from the inhomogeneity of rock material deposited by the Scandinavian Ice Sheet in various regions and from the variability in the post-glacial deposits. Composition of the analyzed gravels is similar to that reported by Wyszomirski et al. [21] for post-glacial gravels from north-eastern Poland, except for the fact that in the analyzed gravels particles of crystalline rocks dominate over fragments of carbonate rocks.

Microscopic analysis enables fast and simple identification of mineral constituents of aggregate particles that may be susceptible to reactions in the alkaline environment of concrete. Depending on the results of the observations, aggregates are classified into the following classes: very unlikely to be alkali-reactive (Class I), alkali-reactivity uncertain (Class II) and very likely to be alkali-reactive (Class III) [18]. In the case of Class II and Class III, information should also be given if the potential reactivity pertains to ASR, ACR or both, by adding a suffix: -S, -C or -SC. Guidelines given in the RILEM AAR-1 document [18] state that the results of petrographic examination should take into account regional experiences and national standards. Lack of documents or specifications of this type in Poland has already been pointed out by researchers, including Naziemiec and Pabiś-Mazgaj [22] or Jóźwiak--Niedźwiedzka et al. [23]. Therefore, any aggregates that contain any form of reactive silica in petrographic analysis, regardless of its quantity, should be considered as potentially reactive and subjected to further tests, e.g. the accelerated mortar-bar test described in RILEM AAR-2 document [24] or concrete prism test described in RILEM AAR-3 document [25], consisting in measurement of elongation of mortar or concrete specimens made from analyzed aggregates.

According to the National Ready Mixed Concrete Association [26], aggregates should be considered potentially reactive if they contain more than:

- 0.5% opal,
- 1.0% tridymite or cristobalite,
- 3.0% chalcedony,
- 3.0% volcanic glass,
- 5.0% cryptocrystalline and microcrystalline quartz or strained quartz.

Particles of opal were identified in only one of the aggregates, and their content is within the acceptable limit given by NRMCA [26]. This amorphous form of silica undergoes przeobrażeniu w minerały krzemionkowe o bardziej uporządkowanej strukturze wewnętrznej [27]. Jej transformacji sprzyja także podwyższone pH środowiska [28]. Częstszym składnikiem skał są bardziej stabilne w przyrodzie chalcedon i kwarc. Ten pierwszy w badanych żwirach występuje głównie w okruchach skał krzemionkowych, ale też obecny jest jako składnik mineralny wapieni i piaskowców. Udział okruchów skał krzemionkowych w żwirach jest zróżnicowany. W przypadku żwirów z trzech kopalni albo nie występują one w ogóle, albo jest ich mało. W pozostałych żwirach skały krzemionkowe sa liczniejsze, a ich ilość przekracza bezpieczny według NRMCA [26] poziom. W wapieniach występowanie chalcedonu ogranicza się wyłącznie do bioklastów, natomiast w piaskowcach pełni on rolę spoiwa. W tych pierwszych jego zawartość jest niewielka i nie przekracza 3,0%, podczas gdy w tych drugich jest bardziej zmienna i w niektórych ziarnach piaskowców niemal czterokrotnie większa od bezpiecznej wartości [26]. Kwarc mikrokrystaliczny znajduje się w wapieniach jasnoszarych do jasnożółtych i ciemnoszarych, granitach czerwonych, diorytach, porfirach bezkwarcowych, kwarcytach jasnoszarych do jasnożółtych, kwarcytach jasnoróżowych do jasnoczerwonych oraz ziarnach opalu. Wraz z kwarcem kryptokrystalicznym obecny jest on także w gnejsach czerwonych. W nich oraz w porfirach bezkwarcowych i obu odmianach kwarcytów udział kwarcu kryptokrystalicznego i mikrokrystalicznego jest większy od wartości podanej w zaleceniach NRMCA [26]. Kwarc w stanie naprężeń, w którym pod wpływem procesów tektonicznych doszło do odkształceń w strukturze krystalicznej, w obserwacjach mikroskopowych charakteryzuje się smużystym lub falistym wygaszaniem światła. We wszystkich odmianach, w których kwarc występuje, ma on taki właśnie charakter, przy czym w piaskowcach, granitach, gnejsach i kwarcytach jego zawartość przekracza wartość podaną przez NRMCA [26]. W opisywanych skałach zdarza się, że obecne są w nich jednocześnie dwie formy reaktywnej krzemionki. Potencjalnie reaktywnych składników nie zawierają jedynie bazalty i diabazy. Z drugiej jednak strony badania dotyczące tych skał [4, 29] wykazały, że także one mogą być przyczyna zajścia reakcji ASR z powodu znajdującego się w nich szkliwa wulkanicznego. Problem obecności alkalicznie reaktywnej krzemionki dotyczy nie tylko żwirów polodowcowych, ale również współwystępujących z nimi piasków, co zostało opisane m.in. przez Jóźwiak-Niedźwiedzką i in. [30].

5. WNIOSKI

Przeprowadzone badania petrograficzne żwirów polodowcowych północno-zachodniej Polski i północno-wschodnich Niemiec pozwoliły ustalić następujące konkluzje:

 Zbadane żwiry charakteryzują się zróżnicowanym składem petrograficznym. Stwierdzono, że dominują w nich transformation into siliceous minerals with more ordered internal structure in the processes of diagenesis [27] which include burial of sediments combined with an increase in pressure and temperature. Its transformation is also facilitated by an environment of higher pH [28]. Chalcedony and quartz, which are more stable in the natural environment, constitute more common components of rocks. While chalcedony was identified in the analyzed gravels mainly in particles of siliceous rocks, it was also observed as a constituent of limestones and sandstones. Content of particles of siliceous rocks in gravels is diverse. In the case of three pits, there are no such particles or they are very rare. In the other two gravels, the content of siliceous rocks is greater and exceeds the acceptable limit according to NRMCA [26]. In limestones the occurrence of chalcedony is limited only to bioclasts, in sandstones it occurs as a cement. In limestones the content of chalcedony is low - it does not exceed 3.0%. In sandstones it is more variable and some particles display chalcedony content that exceeds the safe value [26] almost four times. Microcrystalline quartz occurs in light gray to light yellow limestones, dark gray limestones, red granites, diorites, quartzless porphyries, light gray to light yellow quartzites, light pink to light red quartzites and particles of opal. Along with cryptocrystalline quartz, it occurs also in red gneisses. The red gneisses, quartzites porphyries and both varieties of quartzites display content of cryptocrystalline and microcrystalline quartz exceeding the limit value given in the NRMCA guidelines [26]. Strained quartz, whose internal structure has been affected by tectonic events, extinguishes the light irregularly in microscopic analysis. Strained quartz occurs in all the rock varieties in which it was observed. In sandstones, granites, gneisses and quartzites its content exceeds the acceptable limit given by NRMCA [26]. Sometimes two forms of reactive silica are present in the analyzed rocks. Only basalts and diabases does contain any potentially reactive constituents. However, research made on these rocks [4, 29] indicated that they may also cause ASR due to the occurrence of volcanic glass in their mineral composition. The problem of occurrence of alkali-reactive silica concerns not only post-glacial gravels, but also sands that occur together with them. This issue was described by, among others, Jóźwiak-Niedźwiedzka et al. [30].

5. CONCLUSIONS

The performed petrographic examination of gravels from post-glacial deposits located in north-western Poland and north-eastern Germany enabled formulation of the following conclusions: okruchy skał krystalicznych, które przeważają nad okruchami wapieni. Mniejszy jest udział okruchów piaskowców, natomiast podrzędnie występują okruchy skał krzemionkowych i opalu. Taki skład kruszyw może korzystnie wpływać na właściwości fizyko-mechaniczne wykonanego z nich betonu.

- Okruchy większości skał zawierają krzemionkę uznawaną za alkalicznie reaktywną. Opal stwierdzono tylko w jednym kruszywie, natomiast chalcedon występuje we wszystkich kruszywach. Jest on głównym składnikiem skał krzemionkowych oraz akcesorycznym składnikiem wapieni i piaskowców. Kwarc kryptokrystaliczny i mikrokrystaliczny zidentyfikowano z kolei w wapieniach jasnoszarych do jasnożółtych i ciemnoszarych, granitach i gnejsach czerwonych, diorytach, porfirach bezkwarcowych, kwarcytach jasnoszarych do jasnożółtych, kwarcytach jasnoróżowych do jasnoczerwonych oraz ziarnach opalu. Kwarc we wszystkich odmianach litologicznych skał, w których występuje, jest w stanie naprężeń.
- Składniki mineralne skał krystalicznych uległy różnym procesom wtórnym. W plagioklazach widoczne są przejawy ich kaolinityzacji, a w biotycie chlorytyzacji. Rzadziej obserwowane są ślady chlorytyzacji amfiboli, opacytyzacji biotytu, serycytyzacji skaleni potasowych i serpentynizacji oliwinów.
- Żwiry ze złóż polodowcowych mogą być potencjalnie reaktywne alkalicznie.

Dzięki analizie petrograficznej możliwe jest stwierdzenie w krótkim czasie, czy w ziarnach skał znajduje się krzemionka, jak również ewentualne ustalenie jej formy oraz ilości. Analiza petrograficzna nie powinna jednak być stosowana jako jedyna metoda oceny reaktywności alkalicznej, a kruszywa należy poddać badaniom laboratoryjnym w zaprawach i betonach. Utrudnieniem przy interpretacji wyników badań petrograficznych jest brak krajowych wytycznych, do których można byłoby odnieść uzyskane wyniki. Poza tym ziarna kruszyw mogą zawierać więcej niż jedną formę alkalicznie reaktywnej krzemionki, przez co trudno byłoby porównać wyniki z takimi wytycznymi.

INFORMACJE DODATKOWE

Badania zostały sfinansowane z funduszu wspierającego rozwój młodych naukowców na Wydziale Nauk o Ziemi i Gospodarki Przestrzennej UMK w Toruniu.

BIBLIOGRAFIA / REFERENCES

[1] Portland Cement Association: Types and Causes of Concrete Deterioration, IS536, PCA, Skokie, 2002

- The gravels are characterized by variable petrographic composition. It was noted that particles of crystalline rocks are predominant over particles of limestones. The content of particles of sandstones is lower, while fragments of siliceous rocks and opal occur only in small quantities. Such composition of aggregates may positively affect the physico-mechanical properties of concrete in which they are used.
- Particles of the majority of the observed rocks contain silica which is considered alkali-reactive. Opal occurs only in one aggregate, whereas chalcedony in all the analyzed aggregates. The latter is the main constituent in siliceous rocks and an accessory constituent in limestones and sandstones. Cryptocrystalline and microcrystalline quartz was identified in light gray to light yellow limestones, dark gray limestones, red granites and gneisses, diorites, quartzless porphyries, light gray to light yellow quartzites, light pink to light red quartzites and particles of opal. Quartz grains in all of the lithological varieties in which they were observed show undulatory extinction.
- Mineral constituents of crystalline rocks have undergone various secondary processes. Plagioclases display signs of kaolinitization, while biotite signs of chloritization. Chloritization of amphiboles, opacitization of biotite, sericitization of alkali feldspars and serpentinization of olivines were less common.
- Gravels from post-glacial deposits may be potentially alkali-reactive.

Petrographic examination enables fast verification of whether silica occurs in particles of the analyzed rocks. It is also a helpful tool in identification of its form and determination of quantity. However, petrographic analysis should not be used as the only method of evaluation of alkali-reactivity. Aggregates should also be subjected to laboratory tests in mortars and concretes. Interpretation of the results of the petrographic examination is hindered by the lack of national guidelines that could serve as reference. Moreover, aggregate particles may contain more than one form of alkali-reactive silica, which could make such references difficult.

ACKNOWLEDGEMENTS

The research was financed from the fund for support of young scientists at the Faculty of Earth Sciences and Spatial Management of the Nicolaus Copernicus University in Toruń.

[2] Thomas M.D., Fournier B., Folliard K.J.: Alkali-aggregate reactivity (AAR) Facts Book. Report No. FHWA-HIF-13-019, Federal Highway Administration, Washington, 2013

- [3] Alaejos P., Lanza V.: Influence of equivalent reactive quartz content on expansion due to alkali silica reaction. Cement and Concrete Research, 42, 1, 2012, 99-104, DOI: 10.1016/j.cemconres.2011.08.006
- [4] Medeiros S., Fernandes I., Fournier B., Nunes J., Santos-Silva A., Ramos V., Soares D.: Alkali-silica reaction in volcanic rocks: a worldwide comparative approach. Materiales De Construcción, 72, 346, 2022, DOI: 10.3989/mc.2022.16221
- [5] Kim J.J., Fan T., Reda Taha M.M.: Simulating the Effect of ASR on the Performance of Concrete Structures. 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, Vienna, 2015, 157-165, DOI: 10.1061/9780784479346.019
- [6] Rezakhani R., Alnaggar M., Cusatis G.: Multiscale Homogenization Analysis of Alkali-Silica Reaction (ASR) Effect in Concrete. Engineering, 5, 6, 2019, 1139-1154, DOI: 10.1016/j.eng.2019.02.007
- [7] Gillott J.E.: Mechanism and kinetics of expansion in the alkali-carbonate rock reaction. Canadian Journal of Earth Sciences, 1, 2, 1964, 121-145, DOI: 10.1139/e64-007
- [8] Katayama T.: The so-called alkali-carbonate reaction (ACR) – Its mineralogical and geochemical details, with special reference to ASR. Cement and Concrete Research, 40, 4, 2010, 643-675, DOI: 10.1016/j.cemconres.2009.09.020
- [9] Katayama T., Jensen V., Rogers C.A.: The enigma of the 'so-called' alkali-carbonate reaction. Proceedings of the Institution of Civil Engineers "Construction Materials", 169, 4, 2016, 223-232, DOI: 10.1680/jcoma.15.00071
- [10] Jensen V.: The controversy of alkali carbonate reaction: state of art on the reaction mechanisms and behaviour in concrete, in: Drimalas T., Ideker J.H., Fournier B. (eds): Proceedings of the 14th International Conference on Alkali-Aggregate Reactions in Concrete, Austin, 2012, http://farin.no/Articles/ICAAR2012%20Jensen2.pdf
- [11] Bilans zasobów złóż kopalin w Polsce wg stanu na 31 XII 2020 r. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa, 2021
- [12] Galos K.: Regionalne zróżnicowanie krajowego rynku kruszyw naturalnych łamanych. Górnictwo i Geoinżynieria, 34, 4, 2010, 179-193
- [13] Radziszewski R., Piłat J., Radziszewski P., Kowalski K.: Kruszywa polodowcowe Polski północno-wschodniej do nawierzchni drogowych. Drogownictwo, 66, 7-8, 2011, 226-231
- [14] Najduchowska M., Naziemiec Z., Pabiś-Mazgaj E.: Właściwości mechaniczne wybranych kruszyw krajowych. Konferencja "Dni Betonu", Wisła, 2018, 129-144

- [15] PN-EN 932-3:2022-12 Badania podstawowych właściwości kruszyw. Część 3: procedura i terminologia uproszczonego opisu petrograficznego
- [16] PN EN 12407:2007 Metody badań kamienia naturalnego. Badania petrograficzne
- [17] ASTM C295/C295M-19:2019 Standard Guide for Petrographic Examination of Aggregates for Concrete
- [18] Sims I., Nixon P.: RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates – Petrographic method. Materials and Structures, 36, 2003, 480-496, DOI: 10.1007/BF02481528
- [19] Czubla P., Gałązka D., Górska M.: Eratyki przewodnie w glinach morenowych Polski. Przegląd Geologiczny, 54, 4, 2006, 352-362
- [20] Górska-Zabielska M.: Obszary macierzyste skandynawskich eratyków przewodnich osadów ostatniego zlodowacenia północno-zachodniej Polski i północno-wschodnich Niemiec. Geologos, 14, 2, 2008, 177-194
- [21] Wyszomirski P., Szydłak T., Pichniarczyk P.: Charakterystyka surowcowa wybranych kruszyw mineralnych NE Polski w aspekcie trwałości betonów. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 96, 2016, 363-378
- [22] Naziemiec Z., Pabiś-Mazgaj E.: Preliminary evaluation of the alkali reactivity of crushed aggregates from glacial deposits in Northern Poland. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 203-222, DOI: 10.7409/rabdim.017.014
- [23] Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Rozpoznanie petrograficzne minerałów reaktywnych w kruszywach krajowych i ich klasyfikacja zgodnie z zasadami RILEM i ASTM. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 223-239, DOI: 10.7409/rabdim.017.015
- [24] Nixon P.J., Sims I.: RILEM Recommended Test Method AAR-2: Detection of Potential Alkali-Reactivity – Accelerated Mortar-Bar Test Method for Aggregates, in: Nixon P., Sims I. (eds): RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. RILEM State-of-the-Art Reports, 17, Springer, Dordrecht, 2016, DOI: 10.1007/978-94-017-7252-5 4
- [25] Nixon P.J., Sims I.: RILEM Recommended Test Method AAR-3: Detection of Potential Alkali-Reactivity – 38°C Test Method for Aggregate Combinations Using Concrete Prisms, in: Nixon P., Sims I. (eds): RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. RILEM State-of-the-Art Reports, 17, Springer, Dordrecht, 2016, DOI: 10.1007/978-94-017-7252-5_5

- [26] National Ready Mixed Concrete Association: Guide Specifications for Concrete Subject to Alkali-Silica Reactions. Maryland, 1993
- [27] Kwiatkowski S.: Diageneza nie detrytycznych osadów krzemionkowych. Przegląd Geologiczny, 44, 6, 1996, 612-618
- [28] Hinman N.W.: Chemical factors influencing the rates and sequences of silica phase transitions: Effects of organic constituents. Geochimica et Cosmochimica Acta, 54, 6, 1990, 1563-1574, DOI: 10.1016/0016-7037(90)90391-W
- [29] Wakizaka Y.: Alkali-silica reactivity of Japanese rocks. Developments in Geotechnical Engineering, 84, 2000, 292-303, DOI: 10.1016/S0165-1250(00)80024-3
- [30] Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Lisowski P.: Potential alkaline reactivity of sands from domestic deposits. Roads and Bridges - Drogi i Mosty, 21, 3, 2022, 253-271, DOI: 10.7409/rabdim.022.015