ZASTOSOWANIE ILOŚCIOWEJ ANALIZY OBRAZU DO OCENY STRUKTURY PORÓW W BETONIE NAPOWIETRZANYM

1. WSTĘP

Celem pracy jest przedstawienie zagadnień związanych z zabezpieczaniem betonu przed działaniem niskich temperatur. Potrzeba poprawy stanu wiedzy w tym zakresie dotyczy w szczególności dostępnych obecnie metod kontroli jakości napowietrzenia betonu konstrukcyjnego. Opracowanie poświęcone jest jednej z takich metod, opartej na zastosowaniu systemu automatycznej analizy obrazu.

1) mgr inż. - Instytut Podstawowych Problemów Techniki PAN, Warszawa
2) prof. dr hab. inż. - Instytut Podstawowych Problemów Techniki PAN, Warszawa
W związku z planowaną budową autostrad w Polsce, w tym również dróg z nawierzchniami betonowymi, jest oczywiste, że nawierzchnie takie będą wykonywane w technologii betonu napowietrzanego. Aby efekt napowietrzenia był zgodny z oczekiwaniami niezbędna jest kontrola uzyskanego materiału; przedstawione w artykule oprzyrządowanie jest narzędziem do takiej kontroli.

Niszczece działanie mrozu na stwardniały beton związane jest ze zwiększeniem się objętości wody w niskich temperaturach, co przy ograniczonej możliwości jej migracji powoduje występowanie znacznych naprężeń rozciągających, a w efekcie - rozsadzanie mikrostruktury materiału. Powtarzające się cykle zamrażania i odmrażania mają efekt kumulacyjny. Proces degradacji betonu zachodzi głównie w stwardniałym zaczynie cementowym. Odporność na działanie mrozu zależy od licznych cech betonu, na przykład od wytrzymałości stwardniałego zaczynu cementowego, stopnia nasycenia betonu wodą, mikrostruktury porów zaczynu cementowego, i in. [1]. Możliwość przedostania się nadmiaru wody, w wyniku ciśnienia wywieranego przez tworzący się lód, do gęsto rozmięszzonych porów powietrznych powoduje, iż zniszczenie nie nastąpi w ogóle lub zostanie opóźnione [2]. Stanowi to podstawę techniki napowietrzania betonu. Jeżeli wymagana jest odporność betonu na działanie niskich temperatur to Polska Norma PN-88/B-06250 nakazuje stosowanie domieszek napowietrzających [3]. Efektywność zabiegu napowietrzenia zależy jednak nie od całkowitej zawartości porów powietrznych, ale przede wszystkim od ich wielkości i rozmieszczenia w stwardniałym zaczynie cementowym. Oceny rozmieszczenia porów, czyli tak zwanej struktury porów, dokonuje się głównie na podstawie dwóch parametrów: wskaźnika rozmieszczenia porów \(L [\text{mm}] \) (nazywanego również współczynnikiem rozstawu porów) oraz powierzchni właściwej porów \(\alpha [\text{mm}^{-1}] \). Przyjmuje się, że w dobrze zabezpieczonym betonie wskaźnik rozmieszczenia porów powinien być mniejszy niż 0,20 mm, a powierzchnia właściwa porów powinna kształtować się na poziomie 16-24 mm\(^{-1}\) (powierzchnia właściwa w betonach napowietrzonych niekiedy sięgać może nawet 32 mm\(^{-1}\))[1].

W celu wyznaczenia parametrów \(L \) i \(\alpha \) stosowano dotychczas powszechnie, chociaż w Polsce, zalecenia amerykańskiej normy ASTM C457, [4]. Parametry struktury porów określano metodami stereologicznymi, posługując się metodą trawersową (ang. linear traverse method) lub zmodyfikowaną metodą punktową (ang. modified point-count method). Według wymienionego dokumentu do wyznaczenia charakterystyk porów powietrznych konieczne było zastosowanie ręcznego lub półautomatycznego urządzenia zliczającego. Podczas pomiaru pod okularem mikroskopu w kontrolowany sposób przesuwa się odpowiednio przygotowany zbiór, to znaczy przeciela i wypolerowa powierzchnia próbki betonowej. W metodzie trawersowej odwzorowuje strukturę materiału następuje wzduł układu wirtualnych linii ciągłych, a w zmodyfikowanej metodzie punktowej - w podobnie wirtualnych punktach, równomiernie rozmieszczonych na powierzchni obserwacji.

Zaproponowane oryginalnie przez Powersa [5] wzory matematyczne pozwalają określić wielkości wskaźnika rozmieszczenia porów \(\bar{L} \), którego związek z mrozood-
pornością betonu był przedmiotem licznych badań. Typowe wyniki charakteryzuje wykres na rysunku 1, wg [1].

Mrozoodporność oceniana jest tu za pośrednictwem tzw. wskaźnika trwałości DF, \textit{(DF - Durability Factor)}, który określa się według wzoru:

$$DF = \frac{\text{(liczba cykli x procent resztkowej wartości modułu sprężystości)}}{300}$$

podczas prób prowadzonych do 300 cykli zamrażania i odmrażania, ewentualnie do chwili, gdy wartość powyższego ilorazu zmalała do 60% wartości początkowej, zależnie od tego, który warunek zostanie spełniony wcześniej [1].

Jak widać na rysunku 1, w krytycznym obszarze zachowania się betonu, przy wartościach \bar{L} w granicach 0,2 – 0,5 mm, różnica wartości tego współczynnika rzędu zależnie od 0,1 mm może przesadzać o efektywności lub niedostateczności zabezpieczenia napowietrzania. Aby zabezpieczyć się przed nazbyt optymistycznym prognozowaniem mrozoodporności zaleca się dążyć do uzyskania wartości \bar{L} na poziomie 0,20 mm lub poniżej.

Wykonanie pomiarów wymaga bardzo wysokiej precyzji prac laboratoryjnych. Przykładowo, przy wykorzystaniu tego samego egzemplarza urządzenia, uzyskane w Kanadzie przez czterech różnych operatorów, realizujących pomiar na tej samej próbie, średnie rozrzuty wartości \bar{L} wyniosły 10%. W przypadku operatorów posiadających mniejszą praktykę rozrzuty mogą sięgać nawet 50%, [6]. Wpływ operatora na jakość uzyskiwanych wyników można wyeliminować poprzez pełną automatyzację procesu zliczania, stosując na przykład komputerowy analizator obrazu. Tego rodzaju analiza obrazu jest coraz powszechniej stosowana w rozmaitych badaniach materiałów inżynierskich, [7], [8], [9].

W poprawnie zaprojektowanym betonie kruszywo powinno być mrozoodporne, a matryca napowietrzona. Pośrednio wynikać będzie stąd przybliżona reguła, że im mniejsza jest maksymalna średnica ziaren kruszywa grubego tym większa jest nie-
zbędna zawartość powietrza w mieszanice, gwarantująca prawidłowe napowietrzenie. Na przykład w niezbyt surowych warunkach zalecana zawartość powietrza w betonie z ziarnami kruszywa o maksymalnej średnicy 9,5 mm wynosi 6%, natomiast w betonie z kruszywem do 37,5 mm – zaledwie 4,5%, [1]. Warunek tak określony jest jednak tylko konieczny a nie dostateczny. Wprowadzanie powietrza w sposób niewłaściwy spowoduje jedynie obniżenie wytrzymałości stwardniałego betonu; przeciętny spadek wytrzymałości na ściskanie wynosi 5,5% na 1% obecnego w mieszance powietrza, [1]. Warunkiem dostatecznym natomiast jest takie wprowadzenie powietrza, aby jego pęcherzyki były drobne i rozmieszczone dostatecznie gęsto, co będzie sygnalizowane m.in. przez odpowiednio niską wartość współczynnika L.

2. OPIS PROCEDURY WG PN EN 480-11

Dotychczas brak było polskiego odpowiednika normy ASTM C 457, [4]. Luka ta została zaploniona poprzez ustanowienie przez Polski Komitet Normalizacyjny europejskiego odpowiednika normy ASTM, w postaci normy EN 480-11, [10]. Według procedury zamieszanej w tym dokumencie, struktura porów powietrznych określa na jest również metodami stereologicznymi i wymaga podania pięciu parametrów. Są to:

- całkowita zawartość powietrza A,
- powierzchnia właściwa porów powietrznych α,
- wskaźnik rozmieszczenia porów powietrznych \bar{L}
- tablica rozkładu wielkości porów powietrznych,
- zawartość mikroporów o średnicy poniżej 0,3 mm A_{300}.

Według [10] stosować należy metodę trawersową, natomiast nie jest przewidywane zastosowanie zmodyfikowanej metody punktowej wzmiankowanej w ASTM C 457 [4].

Całkowita długość linii trawersowej na pojedynczej próbie stwardniałego betonu powinna wynosić przynajmniej 1200 mm, niezależnie od wielkości ziaren kruszywa. Badaniu należy poddać minimum dwie próbki tego samego materiału. Zalecany jest układ linii trawersowych w postaci 4 linii odległych od siebie o około 6 mm przy dolnej i górnej krawędzi próbki, oraz pozostałych linii rozmieszczonych w środkowej strefie próbki, również w odległości około 6 mm od siebie. Pomiarowi długości i zliczaniu podlegają przecięcia linii trawersowej z porami powietrznymi, czyli wyznaczone w ten sposób cięciwy porów. W następstwie pomiarów poszczególne cięciwy klasyfikowane są do odpowiednich klas długości. Ocena rozkładu wielkości porów dokonywana jest z zastosowaniem analizy statystycznej.

Wskaźnik rozmieszczenia porów \bar{L} obliczany jest za pomocą wzorów identycznych jak w normie ASTM C 457 [4], jakkolwiek przyjęte są odmienne oznaczenia:
\[
\bar{L} = \frac{P \cdot T_{\text{tot}}}{400N} \quad \text{gdy} \quad R \leq 4,342 \\
\bar{L} = \frac{3}{\alpha} \left[1,4 \left(1 + R \right)^{1/3} - 1 \right] \quad \text{gdy} \quad R > 4,342 \\
\alpha = \frac{4 \cdot N}{T_a}, \quad A = \frac{T_a \cdot 100}{T_{\text{tot}}}, \quad R = \frac{P}{A}
\]

Poszczególne symbole oznaczają tu:

- \(R \) - stosunek zaczyn/powietrze;
- \(P \) - udział objętościowy zaczynu cementowego w betonie w [%];
- \(T_{\text{tot}} \) - całkowita długość linii trawersowej;
- \(T_a \) - sumaryczna długość cięciw w porach powietrznych;
- \(A \) - całkowita zawartość powietrza w [%];
- \(N \) - liczba zarejestrowanych cięciw.

Norma PN – EN 480-11 dopuszcza do stosowania w opisywanych badaniach dowolną aparaturę pod warunkiem wykazania, że uzyska się „zadowalające wyniki”. Taką aparaturą może być system automatycznej analizy obrazu.

Do pomiarów automatycznych stosuje się również systemy bez analizatora obrazu. Wymienić tu można eksperymentalne na razie zastosowanie profilomierza laserowego [11] i urządzenie wykorzystujące miernik natężenia światła odbitego od powierzchni próbki, używane w laboratorium DBT (Dansk Beton Technik) w Danii. To drugie rozwiązanie oparte jest na spostrzeżeniu, że światło odbite na próbek od białego wypełnienia pastą kontrastującą jest wyraźnie silniejsze od światła odbijanego przez ciemniejsze tło pozostałą części próbki. Umożliwia to rozróżnienie sygnału a system automatycznie klasyfikuje i zlicza impulsy odbierane z przesuwającej się powierzchni próbki.

3. PRZYGOTOWANIE POWIERZCHNI PRÓBEK

Norma PN – EN 480-11 wyszczególnia, chociaż dość ogólnikowo, sprzęt i procedurę przygotowywania próbek do badań zautomatyzowanych, to znaczy realizowanych na próbkach o porach powietrznych wypełnionych środkiem kontrastującym. Norma zaleca badanie próbek o wymiarach 100x150x20 mm, (szerokość x wysokość x grubość). Wycięta próbka stwardniałego betonu poddana jest najpierw wielokrotnemu szlifowaniu, przy zastosowaniu coraz drobniejszych proszków szlifierskich, a

W eksperymentach realizowanych w IPPT PAN według własnej procedury, stosowano próbki o wymiarach 100x100x20 mm, szlifowane proszkami karborundu (SiC) o gradacjach 320, 600 i 1200. Po uzyskaniu wymaganej jakości powierzchni barwiono ją wodoodpornym markerem, a wypełnianie porów pastą cynkową wykonywano na ciepło (rys.2).

W niektórych laboratoriach podejmowano również próby badania zoglądów bez kontrastowania powierzchni, stosując jedynie odpowiednie (ukośne) oświetlenie próbki. Przy takim postępowaniu istotny staje się problem rozróżnienia zaciemnionych fragmentów porów od ciemniejszego kruszywa, jak również poprawnej identyfikacji ziaren kwarcu, o wysokiej przeszczepistości [8], [12].

Najważniejsze i najtrudniejsze w badaniach omawianego typu jest uzyskanie odpowiedniej jakości zglądu, pozbawionego wad takich jak uszkodzenie krawędzi pora, wykruszenie drobnych ziaren kruszywa, lub wykruszenie fragmentów zaczynu, które powodują zafałszowanie wyników pomiaru [13].

Porównawczą ocenę jakości zoglądów przeznaczonych do badań stereologicznych, wykonanych w kilku różnych ośrodkach w kraju, w tym również zoglądów przygotowanych według wzmiankowanej tu procedury, przeprowadzono w pracy [14]. Wnioski wypływające z tej oceny jednoznacznie kwalifikują próbki wykonywane w laboratorium IPPT PAN do zoglądów o bardzo wysokiej jakości.

4. OPIS SYSTEMU DO AUTOMATYCZNEJ ANALIZY OBRAZU

W laboratorium IPPT PAN do wyznaczania parametrów struktury porów powietrznych zastosowano analizator obrazu Image Pro Plus 4.1, z dodatkowym modułem Scope Pro, współpracujący z mikroskopem stereoskopowym Nikon SMZ800, ka-
merą Sony DXC950P i stolikiem skaningowym Marzhauser SCAN 150x150 (rys.3). Stosowany mikroskop pozwala na uzyskiwanie powiększenia od 10x do 63x, a kamera 3CCD zamontowana na mikroskopie umożliwia zarejestrowanie obrazu kolorowego 24 bitowego, lub w 8 bitowej skali szarości, o rozdzielczości 768x576 pikseli, w siatce prostokątnej. Przy powiększeniu 30x oznacza to, że każdy punkt obrazu reprezentuje rzeczywisty obszar o wymiarze około 2,76 μm.

Wysokiej jakości stolik skaningowy pozwala na ustalenie położenia próbki z dokładnością do 0,1 μm, przy czym zakres przesuwu stolika wynosi 150x150 mm. Równoległość linii przesuwu stolika i światłowodowej matrycy kamery uzyskuje się przez przeprowadzenie, przewidzianej w instrukcji obsługi, specjalnej procedury dopasowywania, wymagającej obracania kamery w złączu.
Działanie systemu oparte jest na realizacji specjalnego programu opracowanego w IPPT PAN. Aplikacja zawierająca sekwencje komend sterujących została napisana z pomocą dostępnego w Image Pro Plus języka programowania zbliżonego do Visual Basic (rys.4).

Zasada działania polega na odpowiednim uchwyceniu (zarejestrowaniu) obrazu z kamery i takim jego przetworzeniu, aby w efekcie końcowym uzyskać obraz wcześniej omawianych cięciw, czyli przecięć linii trawersowej z porami powietrznymi. Pomiar na tak uzyskanym obrazie realizowany jest automatycznie. Efektem końcowym jest wygenerowanie w arkuszu kalkulacyjnym Excel tablicy wyników pomiaru, wyświetlanej w wyniku uruchomienia specjalnej makrokomendy Excela.

Dokładny opis algorytmu podano w pracy [15]. Czas pomiaru obejmującego analizę porów wzdłuż 1200 mm linii trawersowej wynosi przy zastosowaniu tego systemu około 40 min.

Opisany tu system, ze względu na swoje bogate możliwości jest wykorzystywany również do wielu innego typu badań, takich jak analiza defektów, ocena mikro-za-
rysowań czy ocena uziarnienia.

Do badania struktury porów przy użyciu tego samego analizatora obrazu można użyć także mniej wyrafinowanego sprzętu optycznego. Na przykład kamerę wideo z mikroskopem można zastąpić cyfrowym aparatem fotograficznym z odpowiednim układem optycznym, ewentualnie użyć skanera o odpowiedniej rozdzielczości, tracąc bardzo niewiele na jakości pozyskiwanych obrazów [16].

5. PRZYKŁADOWE WYNIKI

Istotnym według [10] elementem prezentacji pozyskiwanych wyników jest tabela rozkładu wielkości porów, zestawiana w sposób automatyczny. Przykład takiej tabeli pokazano w tablicy 1. Istotnym elementem tabeli jest rozdzielanie zaobserwowanych długości cięciw na klasy zdefiniowane z dokładnością do 5 μm w kolumnie numer 2. Liczby cięciw w odpowiednich klasach podawane są w kolumnie numer 3.

Do określenia rozkładu porów powietrznych konieczne jest obliczenie liczby porów znajdujących się w objętości 1 mm\(^3\) betonu (kolumna numer 7). W tym celu w kolumnie numer 5 podano wartość udziału porów z cięciwą o określonej długości w ogólnej liczbie przeciętych porów. Wartość tego udziału jest stała i określono ją na podstawie równania wynikającego ze statystycznej oceny zbioru porów:

\[
\frac{\pi \cdot (5 + l_{\text{max}} - l_{\text{min}}) (l_{\text{max}} + l_{\text{min}})}{4 \cdot 10^6}
\]

gdzie \(l_{\text{max}}\) i \(l_{\text{min}}\) oznaczają maksymalną i minimalną długość cięciwy w każdej klasie.

DROGI i MOSTY 2/2002
<table>
<thead>
<tr>
<th>Kolumna</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Przedmiot</td>
<td>1192.62</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klasa</td>
<td>Granice klas</td>
<td>LICZBA CIĘG</td>
<td>LICZBA CIĘG</td>
<td>UDZIAŁ PORÓW ZLOŻONYCH</td>
<td>LICZBA PORÓW W KLASIE</td>
<td>OBJĘTOŚĆ POJEDynczego PORA</td>
<td>ZAWARTOŚĆ POWIETRZA</td>
<td>SKUMULOWANA ZAWARTOŚĆ POWIETRZA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jednostki</td>
<td>µm</td>
<td>mm</td>
<td>mm³</td>
<td>mm³</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 do 10</td>
<td>25</td>
<td>0.02096</td>
<td>0.0001178</td>
<td>177.94793</td>
<td>113.894</td>
<td>5.24E-07</td>
<td>0.006</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15 do 20</td>
<td>21</td>
<td>0.01761</td>
<td>0.0002749</td>
<td>64.05349</td>
<td>44.644</td>
<td>4.19E-06</td>
<td>0.019</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25 do 30</td>
<td>10</td>
<td>0.00838</td>
<td>0.0004320</td>
<td>19.40951</td>
<td>-0.521</td>
<td>1.41E-05</td>
<td>-0.001</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35 do 40</td>
<td>14</td>
<td>0.01174</td>
<td>0.0005890</td>
<td>19.93017</td>
<td>1.949</td>
<td>3.35E-05</td>
<td>0.007</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45 do 50</td>
<td>16</td>
<td>0.01342</td>
<td>0.0007461</td>
<td>17.98130</td>
<td>10.554</td>
<td>6.54E-05</td>
<td>0.069</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>55 do 60</td>
<td>8</td>
<td>0.00671</td>
<td>0.0009032</td>
<td>7.42694</td>
<td>0.065</td>
<td>1.13E-04</td>
<td>0.001</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65 do 80</td>
<td>20</td>
<td>0.01677</td>
<td>0.0022780</td>
<td>7.36164</td>
<td>1.014</td>
<td>2.68E-04</td>
<td>0.027</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>85 do 100</td>
<td>22</td>
<td>0.01845</td>
<td>0.0029060</td>
<td>6.34783</td>
<td>4.687</td>
<td>5.24E-04</td>
<td>0.246</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>105 do 120</td>
<td>7</td>
<td>0.00587</td>
<td>0.0035340</td>
<td>1.66085</td>
<td>0.654</td>
<td>9.05E-04</td>
<td>0.059</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>125 do 140</td>
<td>5</td>
<td>0.00419</td>
<td>0.0016360</td>
<td>1.00708</td>
<td>0.307</td>
<td>1.44E-03</td>
<td>0.044</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>145 do 160</td>
<td>4</td>
<td>0.00335</td>
<td>0.0047910</td>
<td>0.70005</td>
<td>0.081</td>
<td>2.14E-03</td>
<td>0.017</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>165 do 180</td>
<td>4</td>
<td>0.00335</td>
<td>0.0054190</td>
<td>0.61893</td>
<td>0.064</td>
<td>3.05E-03</td>
<td>0.020</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>185 do 200</td>
<td>4</td>
<td>0.00335</td>
<td>0.0060476</td>
<td>0.55459</td>
<td>0.178</td>
<td>4.19E-03</td>
<td>0.074</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>205 do 220</td>
<td>3</td>
<td>0.00252</td>
<td>0.0066760</td>
<td>0.37679</td>
<td>0.032</td>
<td>5.58E-03</td>
<td>0.018</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>225 do 240</td>
<td>3</td>
<td>0.00252</td>
<td>0.0073040</td>
<td>0.34440</td>
<td>0.027</td>
<td>7.24E-03</td>
<td>0.020</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>245 do 260</td>
<td>3</td>
<td>0.00252</td>
<td>0.0079330</td>
<td>0.31709</td>
<td>0.121</td>
<td>9.20E-03</td>
<td>0.112</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>265 do 280</td>
<td>2</td>
<td>0.00168</td>
<td>0.0085610</td>
<td>0.19589</td>
<td>0.013</td>
<td>1.15E-02</td>
<td>0.015</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>285 do 300</td>
<td>2</td>
<td>0.00168</td>
<td>0.0091890</td>
<td>0.18250</td>
<td>-0.013</td>
<td>1.41E-02</td>
<td>-0.018</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>305 do 350</td>
<td>6</td>
<td>0.00503</td>
<td>0.0252700</td>
<td>0.19560</td>
<td>0.167</td>
<td>2.24E-02</td>
<td>0.375</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>355 do 400</td>
<td>1</td>
<td>0.00084</td>
<td>0.0396500</td>
<td>0.02828</td>
<td>-0.022</td>
<td>3.35E-02</td>
<td>-0.073</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>405 do 450</td>
<td>2</td>
<td>0.00168</td>
<td>0.0355800</td>
<td>0.04994</td>
<td>0.050</td>
<td>4.77E-02</td>
<td>0.238</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>455 do 500</td>
<td>0</td>
<td>0.00000</td>
<td>0.0375000</td>
<td>0.00000</td>
<td>-0.006</td>
<td>6.54E-02</td>
<td>-0.037</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>505 do 1000</td>
<td>4</td>
<td>0.00335</td>
<td>0.0591000</td>
<td>0.00568</td>
<td>0.003</td>
<td>5.24E-01</td>
<td>0.163</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1005 do 1500</td>
<td>3</td>
<td>0.00252</td>
<td>0.0987000</td>
<td>0.00256</td>
<td>0.003</td>
<td>1.77E+00</td>
<td>0.453</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1505 do 2000</td>
<td>0</td>
<td>0.00000</td>
<td>1.3760000</td>
<td>0.00000</td>
<td>0.000</td>
<td>4.19E+00</td>
<td>0.000</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2005 do 2500</td>
<td>0</td>
<td>0.00000</td>
<td>1.7670000</td>
<td>0.00000</td>
<td>0.000</td>
<td>8.18E+00</td>
<td>0.000</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2505 do 3000</td>
<td>0</td>
<td>0.00000</td>
<td>2.1620000</td>
<td>0.00000</td>
<td>0.000</td>
<td>1.41E+01</td>
<td>-0.430</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3005 do 4000</td>
<td>2</td>
<td>0.00168</td>
<td>5.5020000</td>
<td>0.00030</td>
<td>0.000</td>
<td>3.35E+01</td>
<td>0.000</td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>
Ponieważ dla każdego pora może być zarejestrowana cięciwa dowolnej długości, mniejszej niż jego średnica, wartości w kolumnie numer 6 odnoszą się do porów zarówno z danej klasy jak i z klas wyższych. Aby uzyskać liczbę porów o średnicy równej górnej granicy klasy, wartości w kolumnie numer 6 dotyczącej klasy wyższej odejmuje się od wartości dla danej klasy i podaje w kolumnie numer 7. W pewnych przypadkach oznacza to, iż uzyskiwane wartości w kolumnie numer 7 i w kolumnach obliczanych na jej podstawie, w tym także zawartość powietrza, mogą przyjmować wartości ujemne, co oczywiście nie ma sensu fizycznego. Spowodowane jest to przyjętym podziałem i zastosowaniem sztywnych granic tychże klas. Norma [10] zaleca w obliczeniach podawać także owe wartości ujemne, co nie wpływa w istotny sposób na rozkład skumulowany (kolumna nr 10).

Tablica 2. Porównanie wyników określania struktury porów w różnych laboratoriach
Table 2. Comparison of pore structure measurements obtained in different laboratories

<table>
<thead>
<tr>
<th>Laboratorium (numer próbek)</th>
<th>Współczynnik rozmiarszenia porów L</th>
<th>Powierzchnia właściwa α</th>
<th>Całkowita zawartość porów A</th>
<th>Zawartość porów o średnicy $<0,350$ mm</th>
<th>Zawartość porów o średnicy $<0,300$ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm$^{-1}$</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPPT (1)</td>
<td>0,22</td>
<td>29</td>
<td>3,0</td>
<td>-</td>
<td>1,1</td>
</tr>
<tr>
<td>DBT (1)</td>
<td>0,21</td>
<td>27</td>
<td>3,3</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>IPPT (2)</td>
<td>0,12</td>
<td>33</td>
<td>6,5</td>
<td>-</td>
<td>2,9</td>
</tr>
<tr>
<td>DBT (2)</td>
<td>0,12</td>
<td>32</td>
<td>7,4</td>
<td>4,8</td>
<td></td>
</tr>
</tbody>
</table>

W celu wykazania zgodnie z zaleceniami normy [10], że dokładność pomiarów jest zadowalająca, badania próbek betonu z IPPT PAN wykonano kilkakrotnie w dwóch niezależnych renomowanych laboratoriach, między innymi także w laboratorium posiadającym certyfikat na tego typu badania. Przykłady z porównań wyników badania dwóch różnych próbek betonowych (próbk (1) i (2)) zestawiono w tablicy 2 (oznaczenia laboratoriów symbolami IPPT i DBT).

6. WNIOSKI

Przedstawiony system pomiarowy jest szybko i sprawnie działającym narzędziem do oceny struktury porów w stwardniałym betonie. Jego działanie zostało sprawdzone podczas licznych serii badań własnych, również na betonach towarowych. Przeprowadzone pomiary porównawcze na tym samym materiale w innym renomowanym
laboratorium wykazały, że uzyskane wyniki charakteryzują się dużą wiarygodnością. W świetle wprowadzania do stosowania normy PN EN 480-11 system jest gotowym narzędziem do zastosowań w praktyce.

Badania struktury porów w sposób automatyczny wymagają wysokiej precyzji wykonywania próbek betonowych. Uzyskanie zgodów o wysokiej jakości uwarunkowane jest posiadaniem przez laboratoryum odpowiedniego sprzętu oraz odpowiednimi kwalifikacjami personelu.

Ograniczenie się w normie [10] jedynie do metody trawersowej, w porównaniu do normy amerykańskiej [4], która przewiduje stosowanie również metody punktowej powoduje, że wyniki uzyskiwane zgodnie z polską normą są bardziej jednoznaczne, [17].

BIBLIOGRAFIA

IMAGE ANALYSIS IN EVALUATION OF AIR-VOIDS STRUCTURE IN AIR ENTRAINED CONCRETE

Abstract

The paper is dedicated to an application of image analysis in evaluation of air-voids structure in air-entrained concrete. A well-known procedure according to ASTM C457 is compared with the recommendations in the new Polish Standard PN EN 480-11. In accordance with the recent document, the air-void system can be evaluated also by means of appropriate image analysis system. A general description and some details of such system completed recently are given. A technique of concrete samples preparation for automatic measurements and effects of specimen preparation technique on the accuracy of results are also discussed. Some results obtained with the use of image analysis system are presented. Results obtained on selected specimens were compared with those obtained in two qualified European laboratories. Introduction of the presented technology is needed from the point of view of expected development of concrete road systems in Poland.